Polymers (Basel)
February 2024
(1) Background: A widespread problem in oral health is cavities produced by cariogenic bacteria that consume fermentable carbohydrates and lower pH to 5.5-6.5, thus extracting Ca and phosphate ions (PO) from teeth.
View Article and Find Full Text PDF(1) Background: In oral surgery, bone regeneration is achieved through various types of bone grafts or bone substitutes and its success is usually analyzed by micro-computed tomography and histomorphometry. The aim of this study was to evaluate the usefulness of Raman spectroscopy as an alternative to other techniques for bone quality evaluation during a standard oral surgery procedure. (2) Methods: The preliminary evaluation of bone augmentation during maxillary sinus floor elevation oral surgery was performed by Raman spectroscopy for several (five) patients during and after the surgery and the results were compared with postoperative data from histomorphometry, EDX and SEM analysis.
View Article and Find Full Text PDF(1) Background: The treatment of dental cavities and restoration of tooth shape requires specialized materials with specific clinical properties, including being easy to model, light-cured, having a natural color, reduced shrinkage, a hardness similar to hydroxyapatite, and no leakage. The dimensional stability of resin composite materials is affected by polymerization shrinkage, degree of conversion (number of π carbon bonds converted into σ ones), thermal contraction and expansion, and interactions with an aqueous environment. (2) Methods: The materials used in our investigation were two composite resins with similar polymer matrices, but different filler (micro/nano filler).
View Article and Find Full Text PDFThe aim of this study was to evaluate the quality of the bone, revealing the different phases for calcified tissues independent of the medical history of the patient in relation to periodontitis by means of in vivo Raman spectroscopy. Raman spectroscopy measurements were performed in vivo during surgery and then ex vivo for the harvested bone samples for the whole group of patients (ten patients). The specific peaks for the Raman spectrum were traced for reference compounds (e.
View Article and Find Full Text PDFWe reported on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs with a diameter of 4.
View Article and Find Full Text PDFWe designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite.
View Article and Find Full Text PDFA major limitation of existing 3D implantable structures for bone tissue engineering is that most of the cells rapidly attach on the outer edges of the structure, restricting the cells penetration into the inner parts and causing the formation of a necrotic core. Furthermore, these structures generally possess a random spatial arrangement and do not preserve the isotropy on the whole volume. Here, we report on the fabrication and testing of an innovative 3D hierarchical, honeycomb-like structure (HS), with reproducible and isotropic arhitecture, that allows in 'volume' migration of osteoblasts.
View Article and Find Full Text PDFAluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices.
View Article and Find Full Text PDFThis work describes a versatile laser-based protocol for fabricating micro-patterned, electrically conductive titanium-polypyrrole/poly(lactic-co-glycolic)acid (Ti-PPy/PLGA) constructs for electrically stimulated (ES) osteogenesis. Ti supports were patterned using fs laser ablation in order to create high spatial resolution microstructures meant to provide mechanical resistance and physical cues for cell growth. Matrix Assisted Pulsed Laser Evaporation (MAPLE) was used to coat the patterned Ti supports with PPy/PLGA layers acting as biocompatible surfaces having chemical and electrical properties suitable for cell differentiation and mineralization.
View Article and Find Full Text PDF