The extracellular Ca(2+)-sensing receptor (CaR) is a key-player in plasma Ca(2+) homeostasis. It is essentially expressed in the parathyroid glands and along the kidney nephron. The distal convoluted tubules (DCT) and connecting tubules (CNT) in the kidney are involved in active Ca(2+) reabsorption, but the function of the CaR has remained unclear in these segments.
View Article and Find Full Text PDFBackground: Kidney stone formation is a major socioeconomic problem in humans, involving pain, recurrent treatment and renal insufficiency. As most renal precipitates contain calcium as a major component, hypercalciuria is the main risk factor for renal stone formation. Different forms of hypercalciuria can be classified, which primarily arise from defects in the main organs involved in calcium homeostasis.
View Article and Find Full Text PDFThe transient receptor potential vanilloid channels 5 and 6 (TRPV5/6) are the most Ca(2+)-selective channels within the TRP superfamily of ion channels. These epithelial Ca(2+) channels are regulated at different intra- and extracellular sites by the feedback response of Ca(2+) itself, calciotropic hormones, and by TRPV5/6-associated proteins. In the present study, bioinformatics was used to search for novel TRPV5/6-associated genes.
View Article and Find Full Text PDFCurr Opin Nephrol Hypertens
July 2007
Purpose Of Review: Recent studies have greatly increased our knowledge concerning the regulation of renal calcium handling. This review focuses on newly identified calciotropic factors present in the pro-urine and the mechanisms by which they control the transient receptor potential channel vanilloid subtype 5 (TRPV5) which forms the gatekeeper of active renal calcium reabsorption.
Recent Findings: The antiaging hormone klotho regulates TRPV5 activity via a novel mechanism modifying its glycosylation status, thereby entrapping the channel at the cell surface.
Extracellular pH has long been known to affect the rate and magnitude of ion transport processes among others via regulation of ion channel activity. The Ca(2+)-selective transient receptor potential vanilloid 5 (TRPV5) channel constitutes the apical entry gate in Ca(2+)-transporting cells, contributing significantly to the overall Ca(2+) balance. Here, we demonstrate that extracellular pH determines the cell surface expression of TRPV5 via a unique mechanism.
View Article and Find Full Text PDFTRPM6 and its closest relative TRPM7 are members of the Transient Receptor Potential Melastatin (TRPM) subfamily of cation channels and are known to be Mg2+ permeable. By aligning the sequence of the putative TRPM6 pore with the pore sequences of the other subfamily members, we located in the loop between the fifth and the sixth transmembrane domain, a stretch of amino acids residues, 1028GEIDVC1033, as the potential selectivity filter. Two negatively charged residues, E1024 (conserved in TRPM6, TRPM7, TRPM1 and TRPM3) and D1031 (conserved along the entire TRPM subfamily), were identified as important determinants of cation permeation through TRPM6, because neutralization of both residues into an alanine resulted in non-functional channels.
View Article and Find Full Text PDFThe transient receptor potential vanilloid 5 (TRPV5) channel determines urinary Ca(2+) excretion, and is therefore critical for Ca(2+) homeostasis. Interestingly, mice lacking the serine protease tissue kallikrein (TK) exhibit robust hypercalciuria comparable to the Ca(2+) leak in TRPV5 knockout mice. Here, we delineated the molecular mechanism through which TK stimulates Ca(2+) reabsorption.
View Article and Find Full Text PDFThe epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) entry pathway in the process of active Ca(2+) (re)absorption. By yeast two-hybrid and glutathione S-transferase pulldown analysis we identified RGS2 as a novel TRPV6-associated protein. RGS proteins determine the inactivation kinetics of heterotrimeric G-protein-coupled receptor (GPCR) signaling by regulating the GTPase activity of G(alpha) subunits.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
May 2006
In the kidney, the epithelial Ca(2+) channel TRPV5 constitutes the apical entry pathway in the process of active Ca(2+) reabsorption. The regulation of Ca(2+) influx through TRPV5 is of crucial importance, because it determines the final amount of Ca(2+) excreted in the urine. The present study identifies FKBP52 as an auxiliary protein of TRPV5, inhibiting channel activity.
View Article and Find Full Text PDFTo provide a cell model for studying specifically the regulation of Ca2+ entry by the epithelial calcium channel transient receptor potential-vanilloid-5 (TRPV5), green fluorescent protein (GFP)-tagged TRPV5 was expressed stably in Madin-Darby canine kidney type I (MDCK) cells. The localization of GFP-TRPV5 in this cell line showed an intracellular granular distribution. Ca2+ uptake in GFP-TRPV5-MDCK cells cultured on plastic supports was threefold higher than in non-transfected cells.
View Article and Find Full Text PDF