Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.
View Article and Find Full Text PDFThis paper presents the design and prototype of a constant volume (isochoric) vessel that can be used for the preservation of large organs in a supercooled state. This prototype is a preliminary version of a more advanced design. The device consists of a cooling bath operated by a mechanical vapor compression refrigeration unit and an isochoric chamber made of stainless steel.
View Article and Find Full Text PDFRecycling polymer/carbon nanotube (CNT) nanocomposites is not well common, despite a growing interest in using polymer/carbon nanotube (CNT) nanocomposites in industrial applications. In this study, the influence of mechanical recycling on the thermal, rheological, mechanical and electrical behavior of ethylene-vinyl acetate (EVA)/CNT nanocomposites is investigated. EVA/CNT nanocomposite with different amounts of CNTs (1, 3 and 5 wt.
View Article and Find Full Text PDFIn this paper, nanocomposites based on polypropylene (PP) filled with up to 5 wt.% of multi-walled carbon nanotubes (MWCNTs) were investigated for determining the material property data used in numerical simulation of manufacturing processes such as the injection molding and extrusion. PP/MWCNT nanocomposite pellets were characterized for rheological behavior, crystallinity, specific volume and thermal conductivity, while injection-molded samples were characterized for mechanical and electrical properties.
View Article and Find Full Text PDFIn this work, the viscoelastic behavior of polypropylene (PP)/multi-walled carbon nanotube (MWCNT) nanocomposites was investigated by indentation testing and phenomenological modeling. Firstly, indentation tests including two-cycle indentation were carried out on PP/MWCNT nanocomposite with three MWCNT loadings (1, 3 and 5 wt %). Next, the Maxwell-Voigt-Kelvin model coupled with two-cycle indentation tests was used to predict the shear creep compliance function and the equivalent indentation modulus.
View Article and Find Full Text PDFUnderstanding the flow behavior of polymer/carbon nanotube composites prior to melt processing is important for optimizing the processing conditions and final product properties. In this study, the melt shear viscosity, specific volume and thermal conductivity of low-density polyethylene (LDPE) filled with multi-walled carbon nanotubes (MWCNTs) were investigated for representative processing conditions using capillary rheometry. The experimental results show a significant increase in the melt shear viscosity of the LDPE/MWCNT composite with nanotube loadings higher than 1 wt.
View Article and Find Full Text PDFThis paper investigates the rheological, mechanical and electrical properties of a Ethylene-Vinyl Acetate (EVA) polymer filled with 1, 3 and 5 wt.% multi-walled carbon nanotubes (MWCNTs). The melt flow and pressure-volume-Temperature () behaviors of the EVA/MWCNT composites were investigated using a high-pressure capillary rheometer, while the electro-mechanical response was investigated on injection-molded samples.
View Article and Find Full Text PDF