Publications by authors named "Catalin Daniel Caleanu"

Natural language processing (NLP) tasks can be addressed with several deep learning architectures, and many different approaches have proven to be efficient. This study aims to briefly summarize the use cases for NLP tasks along with the main architectures. This research presents transformer-based solutions for NLP tasks such as Bidirectional Encoder Representations from Transformers (BERT), and Generative Pre-Training (GPT) architectures.

View Article and Find Full Text PDF

Pedestrian trajectory prediction is one of the main concerns of computer vision problems in the automotive industry, especially in the field of advanced driver assistance systems. The ability to anticipate the next movements of pedestrians on the street is a key task in many areas, e.g.

View Article and Find Full Text PDF

Computer vision, biomedical image processing and deep learning are related fields with a tremendous impact on the interpretation of medical images today. Among biomedical image sensing modalities, ultrasound (US) is one of the most widely used in practice, since it is noninvasive, accessible, and cheap. Its main drawback, compared to other imaging modalities, like computed tomography (CT) or magnetic resonance imaging (MRI), consists of the increased dependence on the human operator.

View Article and Find Full Text PDF

Gesture recognition is an intensively researched area for several reasons. One of the most important reasons is because of this technology's numerous application in various domains (e.g.

View Article and Find Full Text PDF

Illumination normalization of face image for face recognition and facial expression recognition is one of the most frequent and difficult problems in image processing. In order to obtain a face image with normal illumination, our method firstly divides the input face image into sixteen local regions and calculates the edge level percentage in each of them. Secondly, three local regions, which meet the requirements of lower complexity and larger average gray value, are selected to calculate the final illuminant direction according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model.

View Article and Find Full Text PDF