This paper presents the preparation of heterogeneous catalysts for the direct hydrogenation process of CO to methanol. The development of the modern chemical industry is inextricably linked to the use of catalytic processes. As a result, currently over 80% of new technologies introduced in the chemical industry incorporate catalytic processes.
View Article and Find Full Text PDFIn the present work, we studied the impact of excess Na addition on the structure of the standard NASICON ion conductor along with Na ion transport mechanisms. In this sense, NASICON ceramic membranes (NZSP) were prepared by a simple chemical synthesis method, the solid state reaction (SSR), using an excess of 5% Na (NaZrSiPO) and an excess of 10% Na (NaZrSiPO), in order to improve the conduction properties of the ceramic membrane. The characterization of the NZSP nanoparticles was performed by measuring the particle size by dynamic light scattering (DLS), the morphology of the NASICON samples pre-sintered at 1100 °C was analyzed by the SEM method (scanning electron microscope), and X-ray diffraction (XRD) analysis was used to investigate the crystal structure of samples, while the surface area was measured using the BET technique.
View Article and Find Full Text PDFIn recent years, research has focused on developing materials exhibiting outstanding mechanical, electrical, thermal, catalytic, magnetic and optical properties such as graphene/polymer, graphene/metal nanoparticles and graphene/ceramic nanocomposites. Two-dimensional sp hybridized graphene has become a material of choice in research due to the excellent properties it displays electrically, thermally, optically and mechanically. Noble nanomaterials also present special physical and chemical properties and, therefore, they provide model building blocks in modifying nanoscale structures for various applications, ranging from nanomedicine to catalysis and optics.
View Article and Find Full Text PDF