Ther Adv Med Oncol
September 2020
Background: Pancreatic adenocarcinoma is the fourth leading cause of cancer-related death. In cases with metastasis, the combination of 5-fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) or gemcitabine-based chemotherapy regimens are considered the standard of care. However, the optimal sequence of these regimens is unclear.
View Article and Find Full Text PDFImmunotherapy has recently emerged as a novel strategy for treating different types of solid tumors, with promising results. However, still a large fraction of patients do not primarily respond to such approaches, and even responders sooner or later develop resistance. Moreover, immunotherapy is a promising strategy for certain malignancies but not for others, with this discrepancy having been attributed to a more immunogenic microenvironment of some tumors.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
March 2020
In several tumors the PI3K/AKT/mTOR pathway is frequently disrupted, an event that results in uncontrolled cell proliferation and tumor growth. Through the years, several compounds have been developed to inhibit the pathway at different steps: the mammalian target of rapamycin (mTOR) seemed to be the most qualified target. However, this kinase has such a key role in cell survival that mechanisms of resistance are rapidly developed.
View Article and Find Full Text PDFThe central nervous system (CNS) is generally resistant to the effects of radiation, but higher doses, such as those related to radiation therapy, can cause both acute and long-term brain damage. The most important results is a decline in cognitive function that follows, in most cases, cerebral radionecrosis. The essence of radio-induced brain damage is multifactorial, being linked to total administered dose, dose per fraction, tumor volume, duration of irradiation and dependent on complex interactions between multiple brain cell types.
View Article and Find Full Text PDFIn the last few years, the treatment strategy in Non-Small Cell Lung Cancer (NSCLC) patients has been heavily modified by the introduction of the immune-checkpoint inhibitors. Anti-programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) therapy has improved both progression-free and the overall survival in almost all subgroups of patients, with or without PDL1 expression, with different degrees of responses. However, there are patients that are not benefitting from this treatment.
View Article and Find Full Text PDFBackground: Intrahepatic cholangiocarcinoma is an aggressive tumor originating in the epithelium of the bile duct, often associated with distant dissemination. The prognosis is poor and treatment is challenging due to low response rate to standard chemotherapy and lack of targeted therapies.
Case Presentation: Here we report the case of a 74-year-old white woman affected by intrahepatic cholangiocarcinoma with metastatic involvement of spleen, lung, peritoneum, and intra-abdominal lymph nodes.
Background/aims: The importance of copper in the metabolism of cancer cells has been widely studied in the last 20 years and a clear-cut association between copper levels and cancer deregulation has been established. Copper-64, emitting positrons and β-radiations, is indicated for the labeling of a large number of molecules suitable for radionuclide imaging as well as radionuclide therapy. Glioblastoma multiforme (GBM) is the CNS tumor with the worse prognosis, characterized by high number of recurrences and strong resistance to chemo-radio therapy, strongly affecting patients survival.
View Article and Find Full Text PDFThe serum- and glucocorticoid-regulated kinase (SGK1) controls cell transformation and tumor progression. SGK1 affects mitotic stability by regulating the expression of RANBP1/RAN. Here, we demonstrate that SGK1 fluctuations indirectly modify the maturation of pre-miRNAs, by modulating the equilibrium of the RAN/RANBP1/RANGAP1 axis, the main regulator of nucleo-cytoplasmic transport.
View Article and Find Full Text PDFThe serum- and glucocorticoid-regulated kinase (SGK) family consists of three members, SGK1, SGK2 and SGK3, all displaying serine/threonine kinase activity and sharing structural and functional similarities with the AKT family of kinases. SGK1 was originally described as a key enzyme in the hormonal regulation of several ion channels and pumps. Over time, growing and impressive evidence has been accumulated, linking SGK1 to the cell survival, de-differentiation, cell cycle control, regulation of caspases, response to chemical, mechanical and oxidative injury in cancer models as well as to the control of mitotic stability.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most aggressive CNS tumor and is characterized by a very high frequency of clinical relapse after therapy and thus by a dismal prognosis, which strongly compromises patients survival. We have recently identified the small molecule SI113, as a potent and selective inhibitor of SGK1, a serine/threonine protein kinase, that modulates several oncogenic signaling cascades. The SI113-dependent SGK1 inhibition induces cell death, blocks proliferation and perturbs cell cycle progression by modulating SGK1-related substrates.
View Article and Find Full Text PDFThe SGK1 kinase is pivotal in signal transduction pathways operating in cell transformation and tumor progression. Here, we characterize in depth a novel potent and selective pyrazolo[3,4-d]pyrimidine-based SGK1 inhibitor. This compound, named SI113, active in vitro in the sub-micromolar range, inhibits SGK1-dependent signaling in cell lines in a dose- and time-dependent manner.
View Article and Find Full Text PDFThe serum/glucocorticoid-inducible kinase 1 (Sgk1) has demonstrated antiapoptotic function and the capability to regulate cell survival, proliferation, and differentiation. A pivotal role of Sgk1 in carcinogenesis and in resistance to anticancer therapy has been suggested. With the aim of identifying new Sgk1 modulators, 322 pyrazolo-pyrimidine derivatives have been virtually screened with respect to a crystallographic model of Sgk1.
View Article and Find Full Text PDFMalignant glioma is a primary tumor of the central nervous system, representing a major cause of mortality in a young, productive subset of population. The management of this neoplasm requires aggressive treatments, including radiotherapy. Accurate imaging plays a central role in treatment planning process with curative intent based on radiation therapy.
View Article and Find Full Text PDFRadiotherapy is one of the most effective therapeutic strategies for breast cancer patients, although its efficacy may be reduced by intrinsic radiation resistance of cancer cells. Recent investigations demonstrate a link between cancer cell radio-resistance and activation of sphingosine kinase (SphK1), which plays a key role in the balance of lipid signaling molecules. Sphingosine kinase (SphK1) activity can alter the sphingosine-1-phosphate (S1P)/ceramide ratio leading to an imbalance in the sphingolipid rheostat.
View Article and Find Full Text PDFThe aims of radiotherapeutic treatment of brain metastases include maintaining neurocognitive function and improvement of survival. Based on these premises, we present a case report in which the role of repeat stereotactic radiosurgery (SRS) was investigated in a patient with a recurrent brain metastasis from non-small cell lung cancer in the same area as previously treated with radiosurgery. A 40-year-old male caucasian patient was diagnosed with brain metastasis from non-small cell lung cancer (NSCLC) and underwent SRS.
View Article and Find Full Text PDFPurpose: Standard treatments have modest effect against pancreatic cancer, and current research focuses on agents targeting molecular pathways involved in tumor growth and angiogenesis. This study investigated the interactions between ZD6474, an inhibitor of tyrosine kinase activities of vascular endothelial growth factor receptor-2 and epidermal growth factor receptor (EGFR), gemcitabine, and ionizing radiation in human pancreatic cancer cells and analyzed the molecular mechanisms underlying this combination.
Experimental Design: ZD6474, ionizing radiation, and gemcitabine, alone or in combination, were given in vitro to MIA PaCa-2, PANC-1, and Capan-1 cells and in vivo to MIA PaCa-2 tumor xenografts.
Int J Radiat Oncol Biol Phys
January 2006
Radiation enhances both epithelial growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) expression, which are a part of key pathways for tumor progression. Some tumors may not respond well to EGFR inhibitors alone or may develop resistance to EGFR inhibitors. Therefore, drug therapy targeted to VEGF receptors and EGFRs, when combined with radiotherapy (RT), may improve tumor control and provide wider applicability.
View Article and Find Full Text PDFPurpose: Glioblastoma multiforme is an aggressive disease in which vascular endothelial growth factor (VEGF) and the EGF receptor (EGFR) are implicated in tumor growth, relapse, and resistance to radiotherapy and chemotherapy. The VEGF receptors VEGFR-1 (flt-1) and VEGFR-2 (KDR), typically present on endothelial cells, have also been identified in human glioblastoma tissues and cell lines. In addition, EGFR is dysregulated in the majority of human glioblastomas and EGFR overexpression correlates with shorter survival.
View Article and Find Full Text PDFObjective: Targeting the tumor vasculature may offer an alternative or complementary therapeutic approach to targeting growth factor signaling in lung cancer. The aim of these studies was to evaluate the antitumor effects in vivo of the combination of ZD6126, a tumor-selective vascular-targeting agent; ZD1839 (gefitinib, Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor; and ionizing radiation in the treatment of non-small cell lung cancer xenograft model.
Methods: Athymic nude mice with established flank A549 human non-small cell lung cancer xenograft model xenografts were treated with fractionated radiation therapy, ZD6126, ZD1839, or combinations of each treatment.
Targeting specific biological pathways in tumor development has been heralded as a promising approach to the treatment of cancer. Familiar to most investigators are the studies done with epidermal growth factor receptor (EGFR) antagonists, but newer agents currently under development also target angiogenic or cell cycle pathways. EGFR activation stimulates many important signaling pathways associated with cancer development and progression, and importantly, resistance to radiation.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
August 2002
The introduction of biologically active agents that interfere with the epidermal growth factor receptor (EGFR) provides a promising opportunity to improve cancer treatment outcomes. Several EGFR-selective agents, such as humanized monoclonal antibodies and small molecule, orally available tyrosine kinase inhibitors have shown antitumor activity in early clinical trials in advanced cancer patients. Preclinical studies have demonstrated enhanced radiation- and chemotherapy-induced tumor cytotoxicity when EGFR antagonists are implemented.
View Article and Find Full Text PDFBone metastases are a severe problem in oncology, since they usually are associated with pain. External beam radiation therapy (EBRT) has been, for many years, an important component of the treatment regimen to relieve pain. We have performed a clinical study to evaluate the relationship of response to EBRT in terms of pain relief and improvement in quality of life (QoL).
View Article and Find Full Text PDFClin Cancer Res
October 2002
Purpose: The epidermal growth factor receptor (EGFR) is expressed in the majority of human epithelial cancers and has been implicated in the development of cancer cell resistance to cyotoxic drugs and to ionizing radiation.
Experimental Design: We used ZD1839, a selective small molecule EGFR tyrosine kinase inhibitor currently in clinical development. We tested the antiproliferative and the proapoptotic activity of ZD1839 in combination with ionizing radiation in human colon (GEO), ovarian (OVCAR-3), non-small cell lung (A549 and Calu-6), and breast (MCF-7 ADR) cancer cell lines.