This study examines the relationship between physiological complexity, as measured by Approximate Entropy (ApEn) and Sample Entropy (SampEn), and fitness levels in female athletes. Our focus is on their association with maximal oxygen consumption (VO2,max). Our findings reveal a complex relationship between entropy metrics and fitness levels, indicating that higher fitness typically, though not invariably, correlates with greater entropy in physiological time series data; however, this is not consistent for all individuals.
View Article and Find Full Text PDFTumor necrosis factor (TNF)-α is a pleiotropic cytokine implicated in the etiology of several autoimmune diseases, including rheumatoid arthritis (RA). TNF-α regulates diverse effector functions through the activation of TNF-α receptor (TNFR)1 and TNFR2. Although the detrimental role of this cytokine has been addressed in distinct disease settings, the effects of TNF-α on cytokine production by isolated CD4 T helper type 1 (Th1) and Th17 cells, two T cell subpopulations that contribute to the pathogenesis of RA, have not been completely elucidated.
View Article and Find Full Text PDFObesity increases the risk of type 2 diabetes mellitus, cardiovascular disease, fatty liver disease, and cancer. It is also linked with more severe complications from infections, including COVID-19, and poor vaccine responses. Chronic, low-grade inflammation and associated immune perturbations play an important role in determining morbidity in people living with obesity.
View Article and Find Full Text PDFMethod: This was a prospective, observational, and descriptive cohort study. Nasopharyngeal swabs and blood were collected six times at weekly intervals. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) tests and immunoglobulin (Ig) G and IgA assays were used to test for COVID-19.
View Article and Find Full Text PDFObjective: Rheumatoid arthritis (RA) immunopathogenesis revolves around the presentation of poorly characterised self-peptides by human leucocyte antigen (HLA)-class II molecules on the surface of antigen-presenting cells to autoreactive CD4 +T cells. Here, we analysed the HLA-DR-associated peptidome of synovial tissue (ST) and of dendritic cells (DCs) pulsed with synovial fluid (SF) or ST, to identify potential T-cell epitopes for RA.
Methods: HLA-DR/peptide complexes were isolated from RA ST samples (n=3) and monocyte-derived DCs, generated from healthy donors carrying RA-associated shared epitope positive HLA-DR molecules and pulsed with RA SF (n=7) or ST (n=2).
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases.
View Article and Find Full Text PDFRationale: The chikungunya virus (CHIKV) was first isolated in a Tanzanian epidemic area between 1952 and 1953. The best description of the CHIKV transmission during pregnancy can be found in a well-documented epidemic in 2005, in the "La Reunion" island, a French territory located in the Indian Ocean, in which about one-third of the population was infected. Reports of arbovirus infections in pregnancy are increasing over time, but the spectrum of clinical findings remains an incognita among researchers, including CHIKV.
View Article and Find Full Text PDFCongenital Zika virus (ZIKV) infection may present with a broad spectrum of clinical manifestations. Some sequelae, particularly neurodevelopmental problems, may have a later onset. We conducted a prospective cohort study of 799 high-risk pregnant women who were followed up until delivery.
View Article and Find Full Text PDFThe differentiation of IL-10-producing regulatory B cells (Bregs) in response to gut-microbiota-derived signals supports the maintenance of tolerance. However, whether microbiota-derived metabolites can modulate Breg suppressive function remains unknown. Here, we demonstrate that rheumatoid arthritis (RA) patients and arthritic mice have a reduction in microbial-derived short-chain fatty acids (SCFAs) compared to healthy controls and that in mice, supplementation with the SCFA butyrate reduces arthritis severity.
View Article and Find Full Text PDFThe potential of tolerogenic dendritic cells (tolDCs) to shape immune responses and restore tolerance has turn them into a promising therapeutic tool for cellular therapies directed toward immune regulation in autoimmunity. Although the cellular mechanisms by which these cells can exert their regulatory function are well-known, the mechanisms driving their differentiation and function are still poorly known, and the variety of stimuli and protocols applied to differentiate DCs toward a tolerogenic phenotype makes it even more complex to underpin the molecular features involved in their function. Through transcriptional profiling analysis of monocyte-derived tolDCs modulated with dexamethasone (Dex) and activated with monophosphoryl lipid A (MPLA), known as DM-DCs, we were able to identify MYC as one of the transcriptional regulators of several genes differentially expressed on DM-DCs compared to MPLA-matured DCs (M-DCs) and untreated/immature DCs (DCs) as revealed by Ingenuity Pathway Analysis (IPA) upstream regulators evaluation.
View Article and Find Full Text PDFFront Immunol
October 2017
There is growing interest in the use of tolerogenic dendritic cells (tolDCs) as a potential target for immunotherapy. However, the molecular bases that drive the differentiation of monocyte-derived DCs (moDCs) toward a tolerogenic state are still poorly understood. Here, we studied the transcriptional profile of moDCs from healthy subjects, modulated with dexamethasone (Dex) and activated with monophosphoryl lipid A (MPLA), referred to as Dex-modulated and MPLA-activated DCs (DM-DCs), as an approach to identify molecular regulators and pathways associated with the induction of tolerogenic properties in tolDCs.
View Article and Find Full Text PDFTherapeutic blockage of cytokine signalling in autoimmune diseases has improved our understanding of the role of these cytokines in triggering, shaping and perpetuating autoimmune responses. In rheumatoid arthritis (RA), immunopathology is driven by a predominance of arthritogenic T helper cells secreting interferon-γ [T helper type 1 (Th1)] and interleukin (IL)-17 (Th17) over regulatory T cells (T ). The pleiotropic cytokine IL-6 is crucial to the differentiation of Th17 cells and the balance between pathogenic Th17 and protective T .
View Article and Find Full Text PDFBackground: Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by excessive production of extracellular matrix by fibroblasts on skin and internal organs. Although Th2 cells have been involved in fibroblast stimulation, hyperactivated B cells may also play an important role. Regulatory B cells (Bregs) are cells capable of inhibiting inflammatory responses and controlling autoimmune diseases.
View Article and Find Full Text PDFFront Immunol
October 2016
Tolerogenic dendritic cells (TolDCs) are promising tools for therapy of autoimmune diseases, such as rheumatoid arthritis (RA). Here, we characterize monocyte-derived TolDCs from RA patients modulated with dexamethasone and activated with monophosphoryl lipid A (MPLA), referred to as MPLA-tDCs, in terms of gene expression, phenotype, cytokine profile, migratory properties, and T cell-stimulatory capacity in order to explore their suitability for cellular therapy. MPLA-tDCs derived from RA patients displayed an anti-inflammatory profile with reduced expression of co-stimulatory molecules and high IL-10/IL-12 ratio, but were capable of migrating toward the lymphoid chemokines CXCL12 and CCL19.
View Article and Find Full Text PDFDendritic cells (DCs) control immune responses by driving potent inflammatory actions against external and internal threats while generating tolerance to self and harmless components. This duality and their potential to reprogram immune responses in an antigen-specific fashion have made them an interesting target for immunotherapeutic strategies to control autoimmune diseases. Several protocols have been described for in vitro generation of tolerogenic DCs (tolDCs) capable of modulating adaptive immune responses and restoring tolerance through different mechanisms that involve anergy, generation of regulatory lymphocyte populations, or deletion of potentially harmful inflammatory T cell subsets.
View Article and Find Full Text PDFTolerogenic dendritic cells (DCs) are a promising tool to control T cell-mediated autoimmunity. Here, we evaluate the ability of dexamethasone-modulated and monophosphoryl lipid A (MPLA)-activated DCs [MPLA-tolerogenic DCs (tDCs)] to exert immunomodulatory effects on naive and memory CD4 T cells in an antigen-specific manner. For this purpose, MPLA-tDCs were loaded with purified protein derivative (PPD) as antigen and co-cultured with autologous naive or memory CD4 T cells.
View Article and Find Full Text PDFDendritic cells (DCs) are the major professional APCs of the immune system; however, their MHC-II-associated peptide repertoires have been hard to analyze, mostly because of their scarce presence in blood and tissues. In vitro matured human monocyte-derived DCs (MoDCs) are widely used as professional APCs in experimental systems. In this work, we have applied mass spectrometry to identify the HLA-DR-associated self-peptide repertoires from small numbers of mature MoDCs (∼5 × 10 cells), derived from 7 different donors.
View Article and Find Full Text PDFGastric cancer (GC) is the third most common cause of cancer death worldwide. Natural killer cells play an important role in the immune defense against transformed cells. They express the activating receptor NKG2D, whose ligands belong to the MIC and ULBP/RAET family.
View Article and Find Full Text PDFThe activation threshold of B cells is tightly regulated by an array of inhibitory and activator receptors in such a way that disturbances in their expression can lead to the appearance of autoimmunity. The aim of this study was to evaluate the expression of activating and inhibitory molecules involved in the modulation of B cell functions in transitional, naive, and memory B-cell subpopulations from systemic sclerosis patients. To achieve this, blood samples were drawn from 31 systemic sclerosis patients and 53 healthy individuals.
View Article and Find Full Text PDFThe interaction between dendritic cells (DCs) and T cells is crucial on immunity or tolerance induction. In an immature or semi-mature state, DCs induce tolerance through T-cell deletion, generation of regulatory T cells, and/or induction of T-cell anergy. Anergy is defined as an unresponsive state that retains T cells in an "off" mode under conditions in which immune activation is undesirable.
View Article and Find Full Text PDFAim: To date, there is no human dendritic cell (DC) based therapy to prevent allograft rejection in transplanted patients. Here, we evaluate a potential protocol using a murine in vivo transplant model.
Materials & Methods: We generated murine bone marrow-derived DCs (BM-DCs), modulated with rapamycin (Rapa) and activated with monophosphoryl lipid A (Rapamycin-treated and monophosphoryl lipid A-matured DCs [Rapa-mDCs]).
To date, the available options to treat autoimmune diseases such as rheumatoid arthritis (RA) include traditional corticoids and biological drugs, which are not exempt of adverse effects. The development of cellular therapies based on dendritic cells with tolerogenic functions (TolDCs) has opened a new possibility to efficiently eradicate symptoms and control the immune response in the field of autoimmunity. TolDCs are an attractive tool for antigen-specific immunotherapy to restore self-tolerance in RA and other autoimmune disorders.
View Article and Find Full Text PDFDuring allograft rejection, several immune cell types, including dendritic cells, CD4(+) and CD8(+) T cells among others, recirculate between the graft and the nearest draining lymph node, resulting in immunity against the 'foreign' tissue. Regulatory CD4(+) T cells are critical for controlling the magnitude of the immune response and may act to promote or maintain tolerance. They are characterized by the expression of CD25 and Foxp3, and more recently, Neuropilin-1 (Nrp1).
View Article and Find Full Text PDF