Objective: To evaluate NKTR-358, a polyethylene glycol-interleukin-2 conjugate composition designed to selectively induce regulatory T cells (Tregs), in first-in-human studies.
Methods: Healthy volunteers and patients with systemic lupus erythematosus (SLE) received single- or multiple-dose (biweekly) NKTR-358 or placebo in two sequential, randomized, phase 1 studies (single ascending dose [SAD; NCT04133116] and multiple ascending dose [MAD; NCT03556007]). Primary objectives were safety and tolerability; secondary objectives included pharmacokinetics (PK) and immune effects of NKTR-358; exploratory objectives included effects on SLE disease activity.
Antimicrob Agents Chemother
November 2019
New drugs with novel mechanisms of resistance are desperately needed to address both community and nosocomial infections due to Gram-negative bacteria. One such potential target is LpxC, an essential enzyme that catalyzes the first committed step of lipid A biosynthesis. Achaogen conducted an extensive research campaign to discover novel LpxC inhibitors with activity against We report here the antibacterial activity and pharmacodynamics of ACHN-975, the only molecule from these efforts and the first ever LpxC inhibitor to be evaluated in phase 1 clinical trials.
View Article and Find Full Text PDFA major challenge for new antibiotic discovery is predicting the physicochemical properties that enable small molecules to permeate Gram-negative bacterial membranes. We have applied physicochemical lessons from previous work to redesign and improve the antibacterial potency of pyridopyrimidine inhibitors of biotin carboxylase (BC) by up to 64-fold and 16-fold against and , respectively. Antibacterial and enzyme potency assessments in the presence of an outer membrane-permeabilizing agent or in efflux-compromised strains indicate that penetration and efflux properties of many redesigned BC inhibitors could be improved to various extents.
View Article and Find Full Text PDFUDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a Zn deacetylase that is essential for the survival of most pathogenic Gram-negative bacteria. ACHN-975 (N-((S)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1R,2R)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diyn-1-yl)benzamide) was the first LpxC inhibitor to reach human clinical testing and was discovered to have a dose-limiting cardiovascular toxicity of transient hypotension without compensatory tachycardia. Herein we report the effort beyond ACHN-975 to discover LpxC inhibitors optimized for enzyme potency, antibacterial activity, pharmacokinetics, and cardiovascular safety.
View Article and Find Full Text PDFChlamydomonas reinhardtii is a unicellular green alga that is a key model organism in the study of photosynthesis and oxidative stress. Here we describe the large-scale generation of a population of insertional mutants that have been screened for phenotypes related to photosynthesis and the isolation of 459 flanking sequence tags from 439 mutants. Recent phylogenomic analysis has identified a core set of genes, named GreenCut2, that are conserved in green algae and plants.
View Article and Find Full Text PDFIntracellular pathogens subvert the host cell cytoskeleton to promote their own survival, replication, and dissemination. Study of these microbes has led to many discoveries about host cell biology, including the identification of cytoskeletal proteins, regulatory pathways, and mechanisms of cytoskeletal function. Actin is a common target of bacterial pathogens, but recent work also highlights the use of microtubules, cytoskeletal motors, intermediate filaments, and septins.
View Article and Find Full Text PDFDiverse intracellular pathogens subvert the host actin-polymerization machinery to drive movement within and between cells during infection. Rickettsia in the spotted fever group (SFG) are Gram-negative, obligate intracellular bacterial pathogens that undergo actin-based motility and assemble distinctive 'comet tails' that consist of long, unbranched actin filaments. Despite this distinct organization, it was proposed that actin in Rickettsia comet tails is nucleated by the host Arp2/3 complex and the bacterial protein RickA, which assemble branched actin networks.
View Article and Find Full Text PDFMany Rickettsia species are intracellular bacterial pathogens that use actin-based motility for spread during infection. However, while other bacteria assemble actin tails consisting of branched networks, Rickettsia assemble long parallel actin bundles, suggesting the use of a distinct mechanism for exploiting actin. To identify the underlying mechanisms and host factors involved in Rickettsia parkeri actin-based motility, we performed an RNAi screen targeting 115 actin cytoskeletal genes in Drosophila cells.
View Article and Find Full Text PDFThe unicellular green alga Chlamydomonas reinhardtii is a widely used model organism for studies of oxygenic photosynthesis in eukaryotes. Here we describe the development of a resource for functional genomics of photosynthesis using insertional mutagenesis of the Chlamydomonas nuclear genome. Chlamydomonas cells were transformed with either of two plasmids conferring zeocin resistance, and insertional mutants were selected in the dark on acetate-containing medium to recover light-sensitive and nonphotosynthetic mutants.
View Article and Find Full Text PDF