Publications by authors named "Casula E"

Treating cognitive impairment is a holy grail of modern clinical neuroscience. In the past few years, non-invasive brain stimulation is increasingly emerging as a therapeutic approach to ameliorate performance in patients with cognitive impairment and as an augmentation approach in persons whose cognitive performance is within normal limits. In patients with Alzheimer's disease, better understanding of brain connectivity and function has allowed for the development of different non-invasive brain stimulation protocols.

View Article and Find Full Text PDF

Background: The neural activity of the Default Mode Network (DMN) is disrupted in patients with In Alzheimer's disease (AD).

Objectives: We used a novel multimodal approach to track neural signal propagation within the DMN in AD patients.

Methods: Twenty mild to moderate AD patients were recruited.

View Article and Find Full Text PDF
Article Synopsis
  • Recompensation after transjugular intrahepatic portosystemic shunt (TIPS) may improve outcomes in cirrhosis patients, reducing the risk of hepatocellular carcinoma (HCC) and mortality to levels similar to those seen in compensated cirrhosis patients.
  • The study involved 208 patients, where 24% achieved recompensation after one year, with notable improvements in liver function and other health metrics associated with this status.
  • No significant differences in survival rates or HCC risk were observed between recompensated and compensated patients, indicating that successful recompensation can lead to better prognostic outcomes.
View Article and Find Full Text PDF

Objective: Persistent fatigue is a major symptom of the so-called 'long-COVID syndrome', but the pathophysiological processes that cause it remain unclear. We hypothesized that fatigue after COVID-19 would be associated with altered cortical activity in premotor and motor regions.

Methods: We used transcranial magnetic stimulation combined with EEG (TMS-EEG) to explore the neural oscillatory activity of the left primary motor area (l-M1) and supplementary motor area (SMA) in a group of sixteen post-COVID patients complaining of lingering fatigue as compared to a sample of age-matched healthy controls.

View Article and Find Full Text PDF

Objective: To evaluate the feasibility, safety, and effectiveness of gastric conditioning using preoperative arterial embolization (PAE) before McKeown esophagectomy at a tertiary university hospital.

Background: Cervical anastomotic leakage (AL) is a common complication of esophagectomy. Limited clinical evidence suggests that gastric conditioning mitigates this risk.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of coil rotation on TMS-EEG signals, aiming to reduce the interference from cranial muscle activation while measuring brain dynamics.
  • By comparing data from two different conditions (optimal coil rotation vs. minimized muscle activation), the researchers calculated various metrics (TEPs, TRSP, ITPC) using different preprocessing techniques.
  • Results indicate that TMS-EEG signals were significantly larger with optimal coil rotation, but also showed lower similarity than anticipated, suggesting that coil adjustments should be carefully considered based on the study's objectives.
View Article and Find Full Text PDF

The inhibition of action is a fundamental executive mechanism of human behaviour that involve a complex neural network. In spite of the progresses made so far, many questions regarding the brain dynamics occurring during action inhibition are still unsolved. Here, we used a novel approach optimized to investigate real-time effective brain dynamics, which combines transcranial magnetic stimulation (TMS) with simultaneous electroencephalographic (EEG) recordings.

View Article and Find Full Text PDF

Background: Since birth, during the exploration of the environment to interact with objects, we exploit both the motor and sensory components of the upper limb (UL). This ability to integrate sensory and motor information is often compromised following a stroke. However, to date, rehabilitation protocols are focused primarily on recovery of motor function through physical therapies.

View Article and Find Full Text PDF

The transcranial evoked potential (TEP) is a powerful technique to investigate brain dynamics, but some methodological issues limit its interpretation. A possible contamination of the TEP by electroencephalographic (EEG) responses evoked by the somatosensory input generated by transcranial magnetic stimulation (TMS) has been postulated; nonetheless, a characterization of these responses is lacking. The aim of this work was to review current evidence about possible somatosensory evoked potentials (SEP) induced by sources of somatosensory input in the craniofacial region.

View Article and Find Full Text PDF

The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections.

View Article and Find Full Text PDF

The aim of this study was to shed light on the neural substrate of conceptual representations starting from the construct of higher-order convergence zones and trying to evaluate the unitary or non-unitary nature of this construct. We used the 'Thematic and Taxonomic Semantic (TTS) task' to investigate (a) the neural substrate of stimuli belonging to biological and artifact categories, (b) the format of stimuli presentation, i.e.

View Article and Find Full Text PDF

The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) offers an unparalleled opportunity to study cortical physiology by characterizing brain electrical responses to external perturbation, called transcranial-evoked potentials (TEPs). Although these reflect cortical post-synaptic potentials, they can be contaminated by auditory evoked potentials (AEPs) due to the TMS click, which partly show a similar spatial and temporal scalp distribution. Therefore, TEPs and AEPs can be difficult to disentangle by common statistical methods, especially in conditions of suboptimal AEP suppression.

View Article and Find Full Text PDF

The combination of TMS and EEG has the potential to capture relevant features of Alzheimer's disease (AD) pathophysiology. We used a machine learning framework to explore time-domain features characterizing AD patients compared to age-matched healthy controls (HC). More than 150 time-domain features including some related to local and distributed evoked activity were extracted from TMS-EEG data and fed into a Random Forest (RF) classifier using a leave-one-subject out validation approach.

View Article and Find Full Text PDF

Healthy women carrying pathogenic germline mutations in BRCA1 or BRCA2 genes have an increased risk of breast and ovarian cancer. Prophylactic gynecological surgery includes risk-reducing bilateral salpingo-oophorectomy, which, in selected cases, can be combined with hysterectomy. Prophylactic gynecological surgery is recommended after completion of childbearing and can be performed for women aged 35 or more for BRCA1 or 40 or more for BRCA2 mutation carriers.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution.

View Article and Find Full Text PDF

Effective nutrition therapy is a pressing issue in obesity and type 2 diabetes mellitus (T2DM) management. As such, this research aimed to determine the performance of a revised dietary strategy built on the protein-sparing diet in obesity and type 2 diabetes mellitus with regard to obtaining a rapid and stable improvement in glucometabolic control, body weight, body composition, and energy metabolism when applying the strategy in just twenty-one days. The revised protein-sparing diet differs from the traditional protein-sparing modified fast (PSMF) because it does not include foods.

View Article and Find Full Text PDF

Oxidative stress and inflammation lead by dietary oxidised lipids, as oxysterols, have been linked to the loss of intestinal barrier integrity, a crucial event in the initiation and progression of intestinal disorders. In the last decade, probiotic lactobacilli have emerged as an interesting tool to improve intestinal health, thanks to their antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the ability of two commercial probiotic strains of lactobacilli (Lactiplantibacillus plantarum 299v® (DMS 9843) and Lacticaseibacillus casei DG® (CNCMI-1572)), both as live bacteria and intracellular content, to attenuate the oxysterols-induced alteration of intestinal epithelial Caco-2 cell monolayer permeability.

View Article and Find Full Text PDF

Neural oscillations in the gamma frequency band have been identified as a fundament for synaptic plasticity dynamics and their alterations are central in various psychiatric and neurological conditions. Transcranial magnetic stimulation (TMS) and alternating electrical stimulation (tACS) may have a strong therapeutic potential by promoting gamma oscillations expression and plasticity. Here we applied intermittent theta-burst stimulation (iTBS), an established TMS protocol known to induce LTP-like cortical plasticity, simultaneously with transcranial alternating current stimulation (tACS) at either theta (θtACS) or gamma (γtACS) frequency on the dorsolateral prefrontal cortex (DLPFC).

View Article and Find Full Text PDF

Obesity is a multifactorial disease strongly associated with insulin resistance and/or type 2 diabetes mellitus. Correct nutrition represents a valid strategy to fight these dysmetabolic pathologies responsible for numerous diseases, including inflammatory and cardiovascular ones. Medical nutrition therapy, including a Mediterranean diet (MD) and a very low-calorie ketogenic diet (VLKCD), is the first-line treatment for prediabetes/diabetes and overweight/obesity.

View Article and Find Full Text PDF

Studies using transcranial magnetic stimulation (TMS) have demonstrated the importance of direction and intensity of the applied current when the primary motor cortex (M1) is targeted. By varying these, it is possible to stimulate different subsets of neural elements, as demonstrated by modulation of motor evoked potentials (MEPs) and motor behaviour. The latter involves premotor areas as well, and among them, the presupplementary motor area (pre-SMA) has recently received significant attention in the study of motor inhibition.

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation (rTMS) is emerging as a non-invasive therapeutic strategy in the battle against Alzheimer's disease. Alzheimer's disease patients primarily show alterations of the default mode network for which the precuneus is a key node. Here, we hypothesized that targeting the precuneus with TMS represents a promising strategy to slow down cognitive and functional decline in Alzheimer's disease patients.

View Article and Find Full Text PDF

The oral microbial profile in humans has evolved in response to lifestyle changes over the course of different eras. Here, we investigated tooth lesions and the microbial profile of periodontal bacteria (PB) in dental calculus of a Sardinian pre-industrial rural community. In total, 51 teeth belonging to 12 historical individuals buried in an ossuary in the early 1800s and 26 modern teeth extracted from 26 individuals from the same geographical area were compared to determine the oral health status, bacterial load and amount of most relevant PB.

View Article and Find Full Text PDF

Objective: Neuronal excitation/inhibition (E/I) imbalance is a potential cause of neuronal network malfunctioning in Alzheimer's disease (AD), contributing to cognitive dysfunction. Here, we used a novel approach combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to probe cortical excitability in different brain areas known to be directly involved in AD pathology.

Methods: We performed TMS-EEG recordings targeting the left dorsolateral prefrontal cortex (l-DLPFC), the left posterior parietal cortex (l-PPC), and the precuneus (PC) in a large sample of patients with mild-to-moderate AD (n = 65) that were compared with a group of age-matched healthy controls (n = 21).

View Article and Find Full Text PDF

Transcranial magnetic stimulation co-registered with electroencephalographic (TMS-EEG) has previously proven a helpful tool in the study of Alzheimer's disease (AD). In this work, we investigate the use of TMS-evoked EEG responses to classify AD patients from healthy controls (HC). By using a dataset containing 17AD and 17HC, we extract various time domain features from individual TMS responses and average them over a low, medium and high density EEG electrode set.

View Article and Find Full Text PDF

Transcranial Magnetic Stimulation (TMS) combined with EEG recordings (TMS-EEG) has shown great potential in the study of the brain and in particular of Alzheimer's Disease (AD). In this study, we propose an automatic method of determining the duration of TMS-induced perturbation of the EEG signal as a potential metric reflecting the brain's functional alterations. A preliminary study is conducted in patients with Alzheimer's disease (AD).

View Article and Find Full Text PDF