Sugarcane (Saccharum spp. hybrids) accumulates high concentrations of sucrose in its mature stalk and a considerable portion of carbohydrate metabolism is also devoted to cell wall synthesis and fibre production. We examined tissue-specific expression patterns to explore the spatial deployment of pathways responsible for sucrose accumulation and fibre synthesis within the stalk.
View Article and Find Full Text PDFWater-soluble carbohydrates (WSC) stored in the stems and leaf sheaths of winter cereals provide an important source of assimilate for remobilisation during grain-filling. Consequently, WSC are a major contributor to wheat grain yield and grain size in all environments but especially where photosynthesis is compromised as occurs where water is limiting. Breeding programs targeting greater WSC should provide improved varieties with greater and more stable yields in stress environments.
View Article and Find Full Text PDFLarge polyploid genomes of non-model species remain challenging targets for DNA polymorphism discovery despite the increasing throughput and continued reductions in cost of sequencing with new technologies. For these species especially, there remains a requirement to enrich genomic DNA to discover polymorphisms in regions of interest because of large genome size and to provide the sequence depth to enable estimation of copy number. Various methods of enriching DNA have been utilised, but some recent methods enable the efficient sampling of large regions (e.
View Article and Find Full Text PDFAccurate and timely detection of transgene copy number in sugarcane is currently hampered by the requirement to use Southern blotting, needing relatively large amounts of genomic DNA and, therefore, the continued growth and maintenance of bulky plants in containment glasshouses. In addition, the sugarcane genome is both polyploid and aneuploid, complicating the identification of appropriate genes for use as references in the development of a high-throughput method. Using bioinformatic techniques followed by in vitro testing, two genes that appear to occur once per base genome of sugarcane were identified.
View Article and Find Full Text PDFHigh levels of water-soluble carbohydrates (WSC) provide an important source of stored assimilate for grain filling in wheat. To better understand the interaction between carbohydrate metabolism and other metabolic processes associated with the WSC trait, a genome-wide expression analysis was performed using eight field-grown lines from the high and low phenotypic tails of a wheat population segregating for WSC and the Affymetrix wheat genome array. The 259 differentially expressed probe sets could be assigned to 26 functional category bins, as defined using MapMan software.
View Article and Find Full Text PDFBackground: The ability of sugarcane to accumulate high concentrations of sucrose in its culm requires adaptation to maintain cellular function under the high solute load. We have investigated the expression of 51 genes implicated in abiotic stress to determine their expression in the context of sucrose accumulation by studying mature and immature culm internodes of a high sucrose accumulating sugarcane cultivar. Using a sub-set of eight genes, expression was examined in mature internode tissues of sugarcane cultivars as well as ancestral and more widely related species with a range of sucrose contents.
View Article and Find Full Text PDFEnzyme activities in the vacuole have an important impact on the net concentration of sucrose. In sugarcane (Saccharum hybrid), immunolabelling demonstrated that a soluble acid invertase (β-fructofuranosidase; EC 3.2.
View Article and Find Full Text PDFDiscovering single nucleotide polymorphisms (SNPs) in specific genes in a heterozygous polyploid plant species, such as sugarcane, is challenging because of the presence of a large number of homologues. To discover SNPs for mapping genes of interest, 454 sequencing of 307 polymerase chain reaction (PCR) amplicons (> 59 kb of sequence) was undertaken. One region of a four-gasket sequencing run, on a 454 Genome Sequencer FLX, was used for pooled PCR products amplified from each parent of a quantitative trait locus (QTL) mapping population (IJ76-514 x Q165).
View Article and Find Full Text PDFSugarcane is a crop of great interest for engineering of sustainable biomaterials and biofuel production. Isolated sugarcane promoters have generally not maintained the expected patterns of reporter transgene expression. This could arise from defective promoters on redundant alleles in the highly polyploid genome, or from efficient transgene silencing.
View Article and Find Full Text PDFSugarcane is an ideal candidate as a biofactory for the production of alternate higher value products. One way of achieving this is to direct useful proteins into the vacuoles within the sugarcane storage parenchyma tissue. By bioinformatic analysis of gene sequences from putative sugarcane vacuolar proteins a motif has been identified that displays high conservation across plant legumain homologues that are known to function within vacuolar compartments.
View Article and Find Full Text PDFSugarcane is an important crop in tropical regions of the world, producing a very large biomass and accumulating large amounts of sucrose in the stem. In this study, we present the first report of transcript profiling using the GeneChip Sugarcane Genome Array. We have identified transcripts that are differentially expressed in the sugarcane stem during development by expression profiling using the array and total RNA derived from three disparate stem tissues (meristem, internodes 1-3, 8, and 20) from four replicates of the sugarcane variety Q117 grown in the field.
View Article and Find Full Text PDFCommercial sugarcane cultivars (Saccharum spp. hybrids) are both polyploid and aneuploid with chromosome numbers in excess of 100; these chromosomes can be assigned to 8 homology groups. To determine the utility of single nucleotide polymorphisms (SNPs) as a means of improving our understanding of the complex sugarcane genome, we developed markers to a suite of SNPs identified in a list of sugarcane ESTs.
View Article and Find Full Text PDFFifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance.
View Article and Find Full Text PDFTwo important factors influencing sugar yield, the primary focus of sugarcane plant breeding programs, are stalk number and suckering. Molecular markers linked to both of these traits are sought to assist in the identification of high sugar yield, high stalk number, low-suckering sugarcane clones. In this preliminary mapping study, 108 progeny from a biparental cross involving two elite Australian sugarcane clones were evaluated at two sites for two years for both stalk number and suckering.
View Article and Find Full Text PDFSugarcane accumulates high concentrations of sucrose in the mature stem and a number of physiological processes on-going in maturing stem tissue both directly and indirectly allow this process. To identify transcripts that are associated with stem maturation, we compared patterns of gene expression in maturing and immature stem tissue by expression profiling and bioinformatic analysis of sets of stem ESTs. This study complements a previous study of gene expression associated directly with sugar metabolism in sugarcane.
View Article and Find Full Text PDFAs part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population.
View Article and Find Full Text PDFThe ability of sugarcane to accumulate sucrose provides an experimental system for the study of gene expression determining carbohydrate partitioning and metabolism. A sequence survey of 7242 ESTs derived from the sucrose-accumulating, maturing stem revealed that transcripts for carbohydrate metabolism gene sequences (CMGs) are relatively rare in this tissue. However, within the CMG group, putative sugar transporter ESTs form one of the most abundant classes observed.
View Article and Find Full Text PDFThe larvae of the fly Lucilia cuprina cause a cutaneous myiasis in mammalian hosts, particularly sheep. The glycoprotein, peritrophin-95, isolated from Lucilia cuprina larval peritrophic matrix, is a candidate vaccine antigen. This protein induced an immune response in vaccinated sheep that inhibited larval growth.
View Article and Find Full Text PDFAnalysis of a sugarcane (Saccharum spp.) EST (expressed sequence tag) library of 8678 sequences revealed approximately 250 microsatellite or simple sequence repeats (SSRs) sequences. A diversity of dinucleotide and trinucleotide SSR repeat motifs were present although most were of the (CGG)(n) trinucleotide motif.
View Article and Find Full Text PDFThe intrinsic peritrophic matrix glycoprotein, peritrophin-95, from the midgut of larvae of Lucilia cuprina can only be solubilized from the matrix using strong denaturants. This suggests that the protein has a structural role in the matrix. Consistent with this is the finding that immuno-gold and immuno-fluorescence localizations of the protein showed a uniform distribution within the peritrophic matrix.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 1997
Many insects feed on blood or tissue from mammalian hosts. One potential strategy for the control of these insects is to vaccinate the host with antigens derived from the insect. The larvae of the fly Lucilia cuprina feed on ovine tissue and tissue fluids causing a cutaneous myiasis associated with considerable host morbidity and mortality.
View Article and Find Full Text PDFThe larvae of the fly Lucilia cuprina excrete or secrete a chymotrypsia (LCTb) onto the skin of sheep to facilitate the establishment of the larval infestation. A combination of immunoblotting and RT-PCR approaches has established that this protease is also a gut digestive protease. LCTb is synthesized primarily in the cardia, a small highly specialized organ located at the anterior end of the midgut and by midgut cells.
View Article and Find Full Text PDFTwo chymotrypsin-like proteases were purified from the secretory and excretory material of first-instar larvae of Lucilia cuprina. The hydrolysis of N-succinyl-L-phenylalanine-nitroanilide was used to monitor the purification of these proteases which was achieved by affinity chromatography on soybean trypsin inhibitor-Sepharose followed by anion exchange and hydrophobic interaction chromatographies. The enzymatic specificity of the most abundant protease (Lucilia chymotrypsin b; LCTb) was further defined by determining the amino acid sequence of peptides released from insulin B chain after incubation with LCTb.
View Article and Find Full Text PDFVarious protease inhibitors active against both trypsin- and chymotrypsin-like serine proteases were used to characterize gut proteases from Lucilia cuprina by in vitro feeding assays. Significant larval growth retardation was observed on feeding first-instar larvae with trypsin inhibitors, particularly soybean trypsin inhibitor. Feeding of chymostatin, a specific chymotrypsin inhibitor, resulted in no significant growth retardation.
View Article and Find Full Text PDF