Mitochondrial activity and quality control are essential for neuronal homeostasis as neurons rely on glucose oxidative metabolism. The ketone body, D-β-hydroxybutyrate (D-BHB), is metabolized to acetyl-CoA in brain mitochondria and used as an energy fuel alternative to glucose. We have previously reported that D-BHB sustains ATP production and stimulates the autophagic flux under glucose deprivation in neurons; however, the effects of D-BHB on mitochondrial turnover under physiological conditions are still unknown.
View Article and Find Full Text PDFThe nuclear architecture of mammalian cells can be altered as a consequence of anomalous accumulation of nuclear proteins or genomic alterations. Most of the knowledge about nuclear dynamics comes from studies on cancerous cells. How normal healthy cells maintain genome stability, avoiding accumulation of nuclear damaged material, is less understood.
View Article and Find Full Text PDFNuclear structure influences genome architecture, which contributes to determine patterns of gene expression. Global changes in chromatin dynamics are essential during development and differentiation, and are one of the hallmarks of ageing. This chapter describes the molecular dynamics of chromatin structure that occur during development and ageing.
View Article and Find Full Text PDFCell penetrating peptides (CPPs) are molecules capable of passing through biological membranes. This capacity has been used to deliver impermeable molecules into cells, such as drugs and DNA probes, among others. However, the internalization of these peptides lacks specificity: CPPs internalize indistinctly on different cell types.
View Article and Find Full Text PDFBrain aging is characterized by dysfunctional autophagy and cellular senescence, among other features. While autophagy can either promote or suppress cellular senescence in proliferating cells, in postmitotic cells, such as neurons, autophagy impairment promotes cellular senescence. CRM1 (exportin-1/XPO1) exports hundreds of nuclear proteins into the cytoplasm, including the transcription factors TFEB (the main inducer of autophagy and lysosomal biogenesis genes) and STAT3, another autophagy modulator.
View Article and Find Full Text PDFProgrammed cell senescence is a cellular process that seems to contribute to embryo development, in addition to cell proliferation, migration, differentiation and programmed cell death, and has been observed in evolutionary distant organisms such as mammals, amphibians, birds and fish. Programmed cell senescence is a phenotype similar to stress-induced cellular senescence, characterized by the expression of the cell cycle inhibitors p21 and p16, increased activity of a lysosomal enzyme with beta-galactosidase activity (coined senescence-associated beta-galactosidase) and secretion of growth factors, interleukins, chemokines, metalloproteases, etc., collectively known as a senescent-associated secretory phenotype that instructs surrounding tissue.
View Article and Find Full Text PDF(MTB) is the principal cause of human tuberculosis (TB), which is a serious health problem worldwide. The development of innovative therapeutic modalities to treat TB is mainly due to the emergence of multi drug resistant (MDR) TB. Autophagy is a cell-host defense process.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a complex, multifactorial neurodegenerative disorder that represents a major and increasing global health challenge. In most cases, the first clinical symptoms of AD are preceded by neuropathological changes in the brain that develop years to decades before their onset. Therefore, research in the last years has focused on this preclinical stage of AD trying to discover intervention strategies that might, if implemented effectively, delay or prevent disease progression.
View Article and Find Full Text PDFThe nuclear envelope is composed by an outer nuclear membrane and an inner nuclear membrane, which is underlain by the nuclear lamina that provides the nucleus with mechanical strength for maintaining structure and regulates chromatin organization for modulating gene expression and silencing. A layer of heterochromatin is beneath the nuclear lamina, attached by inner nuclear membrane integral proteins such as Lamin B receptor (LBR). LBR is a chimeric protein, having also a sterol reductase activity with which it contributes to cholesterol synthesis.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) can be originated from various etiologies and is preceded mostly by cirrhosis. Unfortunately, there is no effective treatment due to its late prognosis. Alterations in autophagy have been reported during the development and progression of HCC.
View Article and Find Full Text PDFVarious metabolic pathways and molecular processes in the cell act intertwined, and dysregulating the interplay between some of them may lead to cancer. It is only recently that defects in the translation process, i.e.
View Article and Find Full Text PDFNR4A is a nuclear receptor protein family whose members act as sensors of cellular environment and regulate multiple processes such as metabolism, proliferation, migration, apoptosis, and autophagy. Since the ligand binding domains of these receptors have no cavity for ligand interaction, their function is most likely regulated by protein abundance and post-translational modifications. In particular, NR4A1 is regulated by protein abundance, phosphorylation, and subcellular distribution (nuclear-cytoplasmic translocation), and acts both as a transcription factor and as a regulator of other interacting proteins.
View Article and Find Full Text PDFNeurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative.
View Article and Find Full Text PDFThe relationship between the mechanisms that underlie longevity and aging and the metabolic alterations due to feeding conditions has not been completely defined. In the present work, through the deletion of the gene encoding catalase, hydrogen peroxide (HO) was uncovered as a relevant regulator of longevity and of liver metabolism. Mice lacking catalase (Cat) fed ad libitum with a regular diet showed a shorter lifespan than wild type mice, which correlated with reduced body weight, blood glucose levels and liver fat accumulation, but not with increased oxidative damage or consistent premature aging.
View Article and Find Full Text PDFChaperone-mediated autophagy (CMA) is one of the main pathways of the lysosome-autophagy proteolytic system. It regulates different cellular process through the selective degradation of cytosolic proteins. In ageing, the function of CMA is impaired causing an inefficient stress response and the accumulation of damaged, oxidized or misfolded proteins, which is associated with numerous age-related diseases.
View Article and Find Full Text PDFSignificance: Cellular senescence, characterized by permanent cell cycle arrest, has been extensively studied in mitotic cells such as fibroblasts. However, senescent cells have also been observed in the brain. Even though it is recognized that cellular energetic metabolism and redox homeostasis are perturbed in the aged brain and neurodegenerative diseases (NDDs), it is still unknown which alterations in the overall physiology can stimulate cellular senescence induction and their relationship with the former events.
View Article and Find Full Text PDFMultifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor.
View Article and Find Full Text PDFThe emergence of complex diseases is promoting a change from one-target to multitarget drugs and peptides are ideal molecules to fulfill this polypharmacologic role. Here we review current status in the design of polypharmacological peptides aimed to treat complex diseases, focusing on tuberculosis. In this sense, combining multiple activities in single molecules is a two-sided sword, as both positive and negative side effects might arise.
View Article and Find Full Text PDF