Protein kinase R (PKR) is an interferon-induced antiviral protein activated by autophosphorylation in response to double strand DNA (dsRNA) and other stimuli. Activated PKR causes translation inhibition and apoptosis, and it contributes to proinflammatory responses, cell growth, and differentiation. Mouse adenovirus type 1 (MAV-1) counteracts PKR by causing its degradation via a viral protein, early region 4 open reading frame 6 (E4orf6).
View Article and Find Full Text PDFBackground: Meglumine antimoniate is used to treat canine leishmaniosis. In humans, it has been associated with pancreatitis. Although a few case reports have described acute pancreatitis secondary to antimonial treatment in dogs, some studies have concluded that pancreatitis is not an adverse effect of this medication.
View Article and Find Full Text PDFBone tissue engineering is a promising alternative to repair wounds caused by cellular or physical accidents that humans face daily. In this sense, the search for new graphene oxide (GO) nanofillers related to their degree of oxidation is born as an alternative bioactive component in forming new scaffolds. In the present study, three different GOs were synthesized with varying degrees of oxidation and studied chemically and tissue-wise.
View Article and Find Full Text PDFMastectomy is the standard treatment for mammary gland tumors in dogs. In addition to traditional therapy, sodium dichloroacetate (DCA) can act as target therapy, as it may promote autophagy, reduce metastatic potential, and tumor proliferation in mammary tumor cell lines. This study aimed to analyze the effects of DCA as preoperative therapy for mammary tumors in bitches.
View Article and Find Full Text PDFThe constant demand for biocompatible and non-invasive materials for regenerative medicine in accidents and various diseases has driven the development of innovative biomaterials that promote biomedical applications. In this context, using sol-gel and ionotropic gelation methods, zinc oxide nanoparticles (NPs-ZnO) and chitosan nanoparticles (NPs-CS) were synthesized with sizes of 20.0 nm and 11.
View Article and Find Full Text PDFCancer stands as one of the deadliest diseases in human history, marked by an inferior prognosis. While traditional therapeutic methods like surgery, chemotherapy, and radiation have demonstrated success in inhibiting tumor cell growth, their side effects often limit overall benefits and patient acceptance. In this regard, three different graphene oxides (GO) with variations in their degrees of oxidation were studied chemically and tissue-wise.
View Article and Find Full Text PDFTissue accidents provide numerous pathways for pathogens to invade and flourish, causing additional harm to the host tissue while impeding its natural healing and regeneration. Essential oils (EOs) exhibit rapid and effective antimicrobial properties without promoting bacterial resistance. Clove oils (CEO) demonstrate robust antimicrobial activity against different pathogens.
View Article and Find Full Text PDFThe increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide nanoparticles (ZnO-NPs) for subdermal tissue regeneration. Characterization by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the composition of the composites.
View Article and Find Full Text PDFIndian Pacing Electrophysiol J
September 2023
Premature Ventricular Complexes (PVCs) refer to electrical activity arising from ventricles resulting in ventricular contraction independent of the native rhythm. PVCs by themselves are common in the general population but based on the origin of the PVCs, either related to anatomical or electrical substrate, the disease process has a widely varied presentation and prognosis. The clinical presentation of symptoms may vary from being extremely benign, or very severe (malignant).
View Article and Find Full Text PDFChlorosomes from green bacteria perform the most efficient light capture and energy transfer, as observed among natural light-harvesting antennae. Hence, their unique functional properties inspire developments in artificial light-harvesting and molecular optoelectronics. We examine two distinct organizations of the molecular building blocks as proposed in the literature, demonstrating how these organizations alter light capture and energy transfer, which can serve as a mechanism that the bacteria utilize to adapt to changes in light conditions.
View Article and Find Full Text PDFThis research focused on developing new materials for endodontic treatments to restore tissues affected by infectious or inflammatory processes. Three materials were studied, namely tricalcium phosphate β-hydroxyapatite (β-TCP), commercial and natural hydroxyapatite (HA), and chitosan (CS), in different proportions. The chemical characterization using infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the composition of the composite.
View Article and Find Full Text PDFThis study aimed to investigate the recovery of neuromuscular performance using mechanical parameters collected during jump (vertical and horizontal) and strength-power exercises in youth soccer players after official soccer matches. Twenty-one outfield highly trained youth male soccer athletes (age: 18.23±0.
View Article and Find Full Text PDFIn recent years biomedical scientific community has been working towards the development of high-throughput devices that allow a reliable, rapid and parallel detection of several strains of virus or microparticles simultaneously. One of the complexities of this problem lies on the rapid prototyping of new devices and wireless rapid detection of small particles and virus alike. By reducing the complexity of microfluidics microfabrication and using economic materials along with makerspace tools (Kundu et al.
View Article and Find Full Text PDFBackground: Digital mental health interventions (DMHIs) represent a promising solution to address the growing unmet mental health needs and increase access to care. Integrating DMHIs into clinical and community settings is challenging and complex. Frameworks that explore a wide range of factors, such as the Exploration, Preparation, Implementation, Sustainment (EPIS) framework, can be useful for examining multilevel factors related to DMHI implementation efforts.
View Article and Find Full Text PDFRoughly 2 billion ha of land are degraded and in need of ecological restoration worldwide. Active restoration frequently involves revegetation, which leads to the dilemma of whether to conduct direct seeding or to plant nursery-grown seedlings. The choice of revegetation method can regulate plant survival and performance, with economic implications that ultimately feed back to our capacity to conduct restoration.
View Article and Find Full Text PDFBenchtop tissue cultures have become increasingly complex in recent years, as more on-a-chip biological technologies, such as microphysiological systems (MPS), are developed to incorporate cellular constructs that more accurately represent their respective biological systems. Such MPS have begun facilitating major breakthroughs in biological research and are poised to shape the field in the coming decades. These biological systems require integrated sensing modalities to procure complex, multiplexed datasets with unprecedented combinatorial biological detail.
View Article and Find Full Text PDFWith the continuous incorporation of new technologies and advancements in surgical technique, microsurgical procedures around the world have generated a higher success rate and innovative procedures are now possible. In this setting, limitations regarding accessibility and acquisition of medical resources and equipment for these types of operations may be difficult in developing countries. We believe the dexterities of surgeons go beyond the surgical technique, meaning that we are able to use everyday materials to re-create affordable solutions that can be used during surgery in a safe way.
View Article and Find Full Text PDFPharmaceutics
December 2022
The search for new biocompatible materials that can replace invasive materials in biomedical applications has increased due to the great demand derived from accidents and diseases such as cancer in various tissues. In this sense, four formulations based on polycaprolactone (PCL) and polylactic acid (PLA) incorporated with zinc oxide nanoparticles (ZnO-NPs) and tea tree essential oil (TTEO) were prepared. The sol-gel method was used for zinc oxide nanoparticle synthesis with an average size of 11 ± 2 nm and spherical morphology.
View Article and Find Full Text PDFPlotter cutters in stencil mask prototyping are underutilized but have several advantages over traditional MEMS techniques. In this paper we investigate the use of a conventional plotter cutter as a highly effective benchtop tool for the rapid prototyping of stencil masks in the sub-250 μm range and characterize patterned layers of organic/inorganic materials. Furthermore, we show a new diagnostic monitoring application for use in healthcare, and a potential replacement of the Standard Kirby-Bauer Diffusion Antibiotic Resistance tests was developed and tested on both and as pathogens with Oxytetracycline, Streptomycin and Kanamycin.
View Article and Find Full Text PDFThe development of scaffolds for cell regeneration has increased because they must have adequate biocompatibility and mechanical properties to be applied in tissue engineering. In this sense, incorporating nanofillers or essential oils has allowed new architectures to promote cell proliferation and regeneration of new tissue. With this goal, we prepared four membranes based on polylactic acid (PLA), polycaprolactone (PCL), titanium dioxide nanoparticles (TiO-NPs), and orange essential oil (OEO) by the drop-casting method.
View Article and Find Full Text PDFIn recent years biomedical scientific community has been working towards the development of high-throughput devices that allow a reliable, rapid and parallel detection of several strains of virus or microparticles simultaneously. One of the complexities of this problem lies on the rapid prototyping of new devices and wireless rapid detection of small particles and virus alike. By reducing the complexity of microfluidics microfabrication and using economic materials along with makerspace tools (Avra Kundu, Ausaf, and Rajaraman 2018) it is possible to provide an affordable solution to both the problems of high-throughput devices and detection technologies.
View Article and Find Full Text PDFThis paper proposes that elastic potentials, which may be rigorously formulated using the negative Gibbs free energy or the complementary strain energy density, may be used as the yield surface of elasto-plastic constitutive models. Thus, the yield surface may be assumed in some materials as an elastic potential surface for a specific level of critical complementary strain energy density. Traditional approaches, such as the total strain energy criterion, only consider second order terms, i.
View Article and Find Full Text PDFThe use of biopolymers for tissue engineering has recently gained attention due to the need for safer and highly compatible materials. Starch is one of the most used biopolymers for membrane preparation. However, incorporating other polymers into starch membranes introduces improvements, such as better thermal and mechanical resistance and increased water affinity, as we reported in our previous work.
View Article and Find Full Text PDF