Climate oscillations in the Quaternary forced species to major latitudinal or altitudinal range shifts. It has been suggested that adaptation concomitant with range shifts plays key roles in species responses during climate oscillations, but the role of selection for local adaptation to climatic changes remains largely unexplored. Here, we investigated population structure, demographic history and signatures of climate-driven selection based on genome-wide polymorphism data of 141 Japanese Arabidopsis halleri individuals, with European ones as outgroups.
View Article and Find Full Text PDFThe long-term balancing selection acting on mating types or sex-determining genes is expected to lead to the accumulation of deleterious mutations in the tightly linked chromosomal segments that are locally 'sheltered' from purifying selection. However, the factors determining the extent of this accumulation are poorly understood. Here, we took advantage of variations in the intensity of balancing selection along a dominance hierarchy formed by alleles at the sporophytic self-incompatibility system of the Brassicaceae to compare the pace at which linked deleterious mutations accumulate among them.
View Article and Find Full Text PDFThe shift from outcrossing to self-fertilization is one of the main evolutionary transitions in plants and has broad effects on evolutionary trajectories. In Brassicaceae, the ability to inhibit self-fertilization is controlled by 2 genes, and , tightly linked within the -locus. A series of small non-coding RNAs also encoded within the -locus regulates the transcriptional activity of alleles, resulting in a linear dominance hierarchy between them.
View Article and Find Full Text PDFIn flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences.
View Article and Find Full Text PDFBalancing selection is a form of natural selection maintaining diversity at the sites it targets and at linked nucleotide sites. Due to selection favoring heterozygosity, it has the potential to facilitate the accumulation of a "sheltered" load of tightly linked recessive deleterious mutations. However, precisely evaluating the extent of these effects has remained challenging.
View Article and Find Full Text PDFThe self-incompatibility locus (S-locus) of flowering plants displays a striking allelic diversity. How such a diversity has emerged remains unclear. In this article, we performed numerical simulations in a finite island population genetics model to investigate how population subdivision affects the diversification process at a S-locus, given that the two-gene architecture typical of S-loci involves the crossing of a fitness valley.
View Article and Find Full Text PDFDominance is a basic property of inheritance systems describing the link between a diploid genotype at a single locus and the resulting phenotype. Models for the evolution of dominance have long been framed as an opposition between the irreconcilable views of Fisher in 1928 supporting the role of largely elusive dominance modifiers and Wright in 1929, who viewed dominance as an emerging property of the structure of enzymatic pathways. Recent theoretical and empirical advances however suggest that these opposing views can be reconciled, notably using models investigating the regulation of gene expression and developmental processes.
View Article and Find Full Text PDFWhole-genome sequencing of non-model organisms is now widely accessible and has allowed a range of questions in the field of molecular ecology to be investigated with greater power. However, some genomic regions that are of high biological interest remain problematic for assembly and data-handling. Three such regions are the major histocompatibility complex (MHC), sex-determining regions (SDRs) and the plant self-incompatibility locus (S-locus).
View Article and Find Full Text PDFDuring range expansion, edge populations are expected to face increased genetic drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the removal of deleterious mutations and slowing down adaptation. Here, we contrast populations of the European subspecies Arabidopsis lyrata ssp. petraea, which expanded its Northern range after the last glaciation.
View Article and Find Full Text PDFSelf-incompatibility (SI) is a self-recognition genetic system enforcing outcrossing in hermaphroditic flowering plants and results in one of the arguably best understood forms of natural (balancing) selection maintaining genetic variation over long evolutionary times. A rich theoretical and empirical population genetics literature has considerably clarified how the distribution of SI phenotypes translates into fitness differences among individuals by a combination of inbreeding avoidance and rare-allele advantage. At the same time, the molecular mechanisms by which self-pollen is specifically recognized and rejected have been described in exquisite details in several model organisms, such that the genotype-to-phenotype map is also pretty well understood, notably in the Brassicaceae.
View Article and Find Full Text PDFSmall noncoding RNAs are central regulators of genome activity and stability. Their regulatory function typically involves sequence similarity with their target sites, but understanding the criteria by which they specifically recognize and regulate their targets across the genome remains a major challenge in the field, especially in the face of the diversity of silencing pathways involved. The dominance hierarchy among self-incompatibility alleles in Brassicaceae is controlled by interactions between a highly diversified set of small noncoding RNAs produced by dominant S-alleles and their corresponding target sites on recessive S-alleles.
View Article and Find Full Text PDFIn many hermaphroditic flowering plants, self-fertilization is prevented by self-incompatibility (SI), often controlled by a single locus, the S-locus. In single isolated populations, the maintenance of SI depends chiefly on inbreeding depression and the number of SI alleles at the S-locus. In subdivided populations, however, population subdivision has complicated effects on both the number of SI alleles and the level of inbreeding depression, rendering the maintenance of SI difficult to predict.
View Article and Find Full Text PDFPlant self-incompatibility (SI) is a genetic system that prevents selfing and enforces outcrossing. Because of strong balancing selection, the genes encoding SI are predicted to maintain extraordinarily high levels of polymorphism, both in terms of the number of functionally distinct S-alleles that segregate in SI species and in terms of their nucleotide sequence divergence. However, because of these two combined features, documenting polymorphism of these genes also presents important methodological challenges that have so far largely prevented the comprehensive analysis of complete allelic series in natural populations, and also precluded the obtention of complete genic sequences for many S-alleles.
View Article and Find Full Text PDFBackground: Transposable elements (TEs) are genomic parasites with major impacts on host genome architecture and host adaptation. A proper evaluation of their evolutionary significance has been hampered by the paucity of short scale phylogenetic comparisons between closely related species. Here, we characterized the dynamics of TE accumulation at the micro-evolutionary scale by comparing two closely related plant species, and .
View Article and Find Full Text PDFGenes that do not segregate in heterozygotes at Mendelian ratios are a potentially important evolutionary force in natural populations. Although the impacts of segregation distortion are widely appreciated, we have little quantitative understanding about how often these loci arise and fix within lineages. Here, we develop a statistical approach for detecting segregation distorting genes from the comprehensive comparison of whole genome sequence data obtained from bulk gamete versus somatic tissues.
View Article and Find Full Text PDFBervillé et al. express concern about the existence of the diallelic self-incompatibility (DSI) system in , mainly because our model does not account for results from previous studies from their group that claimed to have documented asymmetry of the incompatibility response in reciprocal crosses. In this answer to their comment, we present original results based on reciprocal stigma tests that contradict conclusions from these studies.
View Article and Find Full Text PDFThe Leavenworthia self-incompatibility locus (S locus) consists of paralogs (Lal2, SCRL) of the canonical Brassicaceae S locus genes (SRK, SCR), and is situated in a genomic position that differs from the ancestral one in the Brassicaceae. Unexpectedly, in a small number of Leavenworthia alabamica plants examined, sequences closely resembling exon 1 of SRK have been found, but the function of these has remained unclear. BAC cloning and expression analyses were employed to characterize these SRK-like sequences.
View Article and Find Full Text PDFAlthough the transition to selfing in the model plant Arabidopsis thaliana involved the loss of the self-incompatibility (SI) system, it clearly did not occur due to the fixation of a single inactivating mutation at the locus determining the specificities of SI (the S-locus). At least three groups of divergent haplotypes (haplogroups), corresponding to ancient functional S-alleles, have been maintained at this locus, and extensive functional studies have shown that all three carry distinct inactivating mutations. However, the historical process of loss of SI is not well understood, in particular its relation with the last glaciation.
View Article and Find Full Text PDFPolyploidy is an example of instantaneous speciation when it involves the formation of a new cytotype that is incompatible with the parental species. Because new polyploid individuals are likely to be rare, establishment of a new species is unlikely unless polyploids are able to reproduce through self-fertilization (selfing), or asexually. Conversely, selfing (or asexuality) makes it possible for polyploid species to originate from a single individual-a bona fide speciation event.
View Article and Find Full Text PDFOur understanding of the systematics of the Eurytemora affinis complex developed at a fast pace over the last decades. Formerly considered as a complex of cryptic species, it is now believed to include three valid species: E. affinis, Eurytemora carolleeae, and Eurytemora caspica.
View Article and Find Full Text PDFThe prevention of fertilization through self-pollination (or pollination by a close relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility locus (S locus). The many alleles at this locus exhibit a dominance hierarchy that determines which of the two allelic specificities of a heterozygous genotype is expressed at the phenotypic level. Here, we uncover the evolution of how at least 17 small RNA (sRNA)-producing loci and their multiple target sites collectively control the dominance hierarchy among alleles within the gene controlling the pollen S-locus phenotype in a self-incompatible Arabidopsis species.
View Article and Find Full Text PDFGametophytic self-incompatibility (GSI) is a widespread genetic system, which enables hermaphroditic plants to avoid self-fertilization and mating with close relatives. Inbreeding depression is thought to be the major force maintaining SI; however, inbreeding depression is a dynamical variable that depends in particular on the mating system. In this article we use multilocus, individual-based simulations to examine the coevolution of SI and inbreeding depression within finite populations.
View Article and Find Full Text PDF