The mechanisms of particle-induced pathogenesis in the lung remain poorly understood. Neutrophilic inflammation and oxidative stress in the lung are hallmarks of toxicity. Some investigators have postulated that oxidative stress from particle surface reactive oxygen species (psROS) on the dust produces the toxicopathology in the lungs of dust-exposed animals.
View Article and Find Full Text PDFHumans will set foot on the Moon again soon. The lunar dust (LD) is potentially reactive and could pose an inhalation hazard to lunar explorers. We elucidated LD toxicity and investigated the toxicological impact of particle surface reactivity (SR) using three LDs, quartz, and TiO.
View Article and Find Full Text PDFBackground: Air pollution is a complex mixture of particles and gases, yet current regulations are based on single toxicant levels failing to consider potential interactive outcomes of co-exposures. We examined transcriptomic changes after inhalation co-exposure to a particulate and a gaseous component of air pollution and hypothesized that co-exposure would induce significantly greater impairments to mitochondrial bioenergetics. A whole-body inhalation exposure to ultrafine carbon black (CB), and ozone (O) was performed, and the impact of single and multiple exposures was studied at relevant deposition levels.
View Article and Find Full Text PDFEnvironmental inhalation exposures are inherently mixed (gases and particles), yet regulations are still based on single toxicant exposures. While the impacts of individual components of environmental pollution have received substantial attention, the impact of inhalation co-exposures is poorly understood. Here, we mechanistically investigated pulmonary inflammation and lung function decline after inhalation co-exposure and individual exposures to ozone (O) and ultrafine carbon black (CB).
View Article and Find Full Text PDFIn this study, we compared and bioactivity of nitrogen-doped multi-walled carbon nanotubes (NDMWCNT) to MWCNT to test the hypothesis that nitrogen doping would alter bioactivity. High-resolution transmission electron microscopy (TEM) confirmed the multilayer structure of MWCNT with an average layer distance of 0.36 nm, which was not altered by nitrogen doping: the nanomaterials had similar widths and lengths.
View Article and Find Full Text PDFBackground: Using engineered nanomaterial-based toners, laser printers generate aerosols with alarming levels of nanoparticles that bear high bioactivity and potential health risks. Yet, the cardiac impacts of printer-emitted particles (PEPs) are unknown. Inhalation of particulate matter (PM) promotes cardiovascular morbidity and mortality, and ultra-fine particulates (< 0.
View Article and Find Full Text PDFDuring extrusion of some polymers, fused filament fabrication (FFF) 3-D printers emit billions of particles per minute and numerous organic compounds. The scope of this study was to evaluate FFF 3-D printer emission-induced toxicity in human small airway epithelial cells (SAEC). Emissions were generated from a commercially available 3-D printer inside a chamber, while operating for 1.
View Article and Find Full Text PDFConcurrent with rising production of carbon-based engineered nanomaterials is a potential increase in respiratory and cardiovascular diseases due to exposure to nanomaterials in the workplace atmosphere. While single-cell models of pulmonary exposure are often used to determine the potential toxicity of nanomaterials in vitro, previous studies have shown that coculture cell models better represent the cellular response and crosstalk that occurs in vivo. This study identified differential gene regulation in human small airway epithelial cells (SAECs) grown either in monoculture or in coculture with human microvascular endothelial cells following exposure of the SAECs to multiwalled carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFMicronized copper azole (MCA) is a lumber treatment improve longevity. In this study, the in vivo response to PM sanding dust generated from MCA-treated lumber was compared to that of untreated yellow pine (UYP) or soluble copper azole-treated (CA-C) lumber to determine if the MCA was more bioactive than CA-C. Mice were exposed to doses (28, 140, or 280 μg/mouse) of UYP, MCA, or CA-C sanding dust using oropharyngeal aspiration.
View Article and Find Full Text PDFHuman and animal studies have confirmed that inhalation of particles from ambient air or occupational settings not only causes pathophysiological changes in the respiratory system, but causes cardiovascular effects as well. At an equal mass lung burden, nanoparticles are more potent in causing systemic microvascular dysfunction than fine particles of similar composition. Thus, accumulated evidence from animal studies has led to heightened concerns about the potential short- and long-term deleterious effects of inhalation of engineered nanoparticles on the cardiovascular system.
View Article and Find Full Text PDFRecent studies have shown that engineered nanoparticles (ENPs) are incorporated into toner powder used in printing equipment and released during their use. Thus, understanding the functional and structural composition and potential synergistic effects of this complex aerosol and released gaseous co-pollutants is critical in assessing their potential toxicological implications and risks. In this study, toner powder and PEPs were thoroughly examined for functional and molecular composition of the organic fraction and the concentration profile of 16 Environmental Protection Agency (EPA)-priority polycyclic aromatic hydrocarbons (PAH) using state of the art analytical methods.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2018
This review surveys recent advances in optical spectral detection of reactive oxygen species (ROS), particularly singlet oxygen, superoxide, hydroxyl radical, and hydrogen peroxide. Advances using nanoparticles and self-organizing nanostructures as well as optical detection schemes are included. Measurements using plasmonic, luminescent, photocatalytic, or self-organizing nanoparticles are highlighted.
View Article and Find Full Text PDFBackground: Heart rate variability (HRV) as a marker reflects the activity of the autonomic nervous system. The prognostic significance of HRV for cardiovascular disease has been reported in clinical and epidemiological studies. Our laboratory has reported alterations in rat heart rate variability (HRV) due to increasing activity of both sympathetic and parasympathetic nervous system after pulmonary exposure to multi-walled carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFRespiratory exposure to multiwalled carbon nanotubes (MWCNT) or asbestos results in fibrosis; however, the mechanisms to reach this end point may be different. A previous study by our group identified pulmonary effects and significantly altered messenger RNA (mRNA) signaling pathways following exposure to 1, 10, 40, and 80 µg MWCNT and 120 µg crocidolite asbestos on mouse lungs over time at 1-month, 6-month, and 1-year postexposure following pulmonary aspiration. As a continuation to the above study, this current study took an in-depth look at the signaling pathways involved in fibrosis development at a single time point, 1 year, and exposure, 40 µg MWCNT, the lowest exposure at which fibrosis was pathologically evident.
View Article and Find Full Text PDFBackground: The integration of engineered nanomaterials (ENM) is well-established and widespread in clinical, commercial, and domestic applications. Cardiovascular dysfunctions have been reported in adult populations after exposure to a variety of ENM. As the diversity of these exposures continues to increase, the fetal ramifications of maternal exposures have yet to be determined.
View Article and Find Full Text PDFSystemic exposure to the inflammagen and bacterial endotoxin lipopolysaccharide (LPS) has been widely used to evaluate inflammation and sickness behavior. While many inflammatory conditions occur in the periphery, it is well established that peripheral inflammation can affect the brain. Neuroinflammation, the elaboration of proinflammatory mediators in the CNS, commonly is associated with behavioral symptoms (e.
View Article and Find Full Text PDFTo protect against decay and fungal invasion into the wood, the micronized copper, copper carbonate particles, has been applied in the wood treatment in recent years; however, there is little information on the health risk associated with sanding micronized copper-treated lumber. In this study, wood dust from the sanding of micronized copper azole-treated lumber (MCA) was compared to sanding dust from solubilized copper azole-treated wood (CA-C) and untreated yellow pine (UYP). The test found that sanding MCA released a much higher concentration of nanoparticles than sanding CA-C and UYP, and the particles between about 0.
View Article and Find Full Text PDFFine/micron-sized iron oxide particulates are incidentally released from a number of industrial processes, including iron ore mining, steel processing, welding, and pyrite production. Some research suggests that occupational exposure to these particulates is linked to an increased risk of adverse respiratory outcomes, whereas other studies suggest that iron oxide is biologically benign. Iron oxide nanoparticles (IONPs), which are less than 100 nm in diameter, have recently surged in use as components of novel drug delivery systems, unique imaging protocols, as environmental catalysts, and for incorporation into thermoplastics.
View Article and Find Full Text PDFSynthetic amorphous silica nanoparticles (SAS NPs) have been used in various industries, such as plastics, glass, paints, electronics, synthetic rubber, in pharmaceutical drug tablets, and a as food additive in many processed foods. There are few studies in the literature on NPs using gene mutation approaches in mammalian cells, which represents an important gap for genotoxic risk estimations. To fill this gap, the mouse lymphoma L5178Y/ assay (MLA) was used to evaluate the mutagenic effect for five different concentrations (from 0.
View Article and Find Full Text PDFRecent experimental evidence indicates significant pulmonary toxicity of multiwalled carbon nanotubes (MWCNTs), such as inflammation, interstitial fibrosis, granuloma formation, and carcinogenicity. Although numerous studies explored the adverse potential of various CNTs, their comparability is often limited. This is due to differences in administered dose, physicochemical characteristics, exposure methods, and end points monitored.
View Article and Find Full Text PDFAssessing the potential health risks for newly developed nanoparticles poses a significant challenge. Nanometer-sized particles are not generally detectable with the light microscope. Electron microscopy typically requires high-level doses, above the physiologic range, for particle examination in tissues.
View Article and Find Full Text PDFEngineered nanomaterials hold great promise for the future development of innovative products but their adverse health effects are a major concern. Recent studies have indicated that certain nanomaterials, including carbon nanotubes (CNTs), may be carcinogenic. However, the underlying mechanisms behind their potential malignant properties remain unclear.
View Article and Find Full Text PDFCytotoxic and neuroinflammatory effects of TiO nanoparticles (TiO-NP) in human airways are mediated by nerve growth factor (NGF), which is also implicated in the pathophysiology of respiratory syncytial virus (RSV) infection. We tested the hypothesis that exposure to TiO-NP results in increased susceptibility to RSV infection and exacerbation of airway inflammation via NGF-mediated induction of autophagy in lower respiratory tract cells. Human primary bronchial epithelial cells were exposed to TiO-NP for 24 h prior to infection with recombinant red RSV (rrRSV).
View Article and Find Full Text PDFFunctionalized multi-walled carbon nanotube (fMWCNT) development has been intensified to improve their surface activity for numerous applications, and potentially reduce toxic effects. Although MWCNT exposures are associated with lung tumorigenesis in vivo, adverse responses associated with exposure to different fMWCNTs in human lung epithelium are presently unknown. This study hypothesized that different plasma-coating functional groups determine MWCNT neoplastic transformation potential.
View Article and Find Full Text PDF