Publications by authors named "Castillo-Garit J"

Aqueous leaf extracts of are widely used because of their diuretic, natriuretic, antiurolithiatic, anti-inflammatory and antihypertensive properties. The major component of the extract is the flavonoid 4',5-dihydroxy-6,7-methylenedioxyflavonol-3--α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside, but it is not known if this compound is responsible for the biological activity. The objective of this work is to develop effective tools that allow predicting the possible activity of the flavonoid aglycone as an inhibitor of metalloproteases that regulate renal fluid excretion.

View Article and Find Full Text PDF

Context: This study investigates the potential of leveraging molecular properties, as determined by MD-LOVIs software and machine learning techniques, to predict the ability of compounds to cross the blood-brain barrier (BBB). Accurate prediction of BBB permeation is critical for the development of central nervous system (CNS) drugs. The study applies various machine learning models, including both classification and regression techniques, to predict BBB passage and molecular activity.

View Article and Find Full Text PDF

In this study, a methodology is proposed, combining ligand- and structure-based virtual screening tools, for the identification of phosphorus-containing compounds as inhibitors of zinc metalloproteases. First, we use Dragon molecular descriptors to develop a Linear Discriminant Analysis classification model, which is widely validated according to the OECD principles. This model is simple, robust, stable and has good discriminating power.

View Article and Find Full Text PDF

Background: Agave brittoniana subsp. brachypus is an endemic plant of Cuba, which contains different steroidal sapogenins with anti-inflammatory effects. This work aims to develop computational models which allow the identification of new chemical compounds with potential anti-inflammatory activity.

View Article and Find Full Text PDF

Ubiquitin-proteasome system (UPS) is a highly regulated mechanism of intracellular protein degradation and turnover. The UPS is involved in different biological activities, such as the regulation of gene transcription and cell cycle. Several researchers have applied cheminformatics and artificial intelligence methods to study the inhibition of proteasomes, including the prediction of UPP inhibitors.

View Article and Find Full Text PDF

The new pandemic caused by the coronavirus (SARS-CoV-2) has become the biggest challenge that the world is facing today. It has been creating a devastating global crisis, causing countless deaths and great panic. The search for an effective treatment remains a global challenge owing to controversies related to available vaccines.

View Article and Find Full Text PDF

The enzyme acetylcholinesterase (AChE) is currently a therapeutic target for the treatment of neurodegenerative diseases. These diseases have highly variable causes but irreversible evolutions. Although the treatments are palliative, they help relieve symptoms and allow a better quality of life, so the search for new therapeutic alternatives is the focus of many scientists worldwide.

View Article and Find Full Text PDF

With the advancement of combinatorial chemistry and big data, drug repositioning has boomed. In this sense, machine learning and artificial intelligence techniques offer a priori information to identify the most promising candidates. In this study, we combine QSAR and docking methodologies to identify compounds with potential inhibitory activity of vasoactive metalloproteases for the treatment of cardiovascular diseases.

View Article and Find Full Text PDF

There is currently no effective dengue virus (DENV) therapeutic. We aim to develop a genetic algorithm-based framework for the design of peptides with possible DENV inhibitory activity. A Python-based tool (denominated AutoPepGEN) based on a DENV support vector machine classifier as the objective function was implemented.

View Article and Find Full Text PDF

Chagas disease is endemic to 21 Latin American countries and is a great public health problem in that region. Current chemotherapy remains unsatisfactory; consequently the need to search for new drugs persists. Here we present a new approach to identify novel compounds with potential anti-chagasic action.

View Article and Find Full Text PDF

The human immunodeficiency virus is a lethal pathology considered as a worldwide problem. The search for new strategies for the treatment of this disease continues to be a great challenge in the scientific community. In this study, a series of 107 derivatives of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine, previously evaluated experimentally against HIV-I reverse transcriptase, was used to model antiretroviral activity.

View Article and Find Full Text PDF

Imbalanced datasets, comprising of more inactive compounds relative to the active ones, are a common challenge in ligand-based model building workflows for drug discovery. This is particularly true for neglected tropical diseases since efforts to identify therapeutics for these diseases are often limited. In this report, we analyze the performance of several undersampling strategies in modeling the Dengue Virus 2 (DENV2) inhibitory activity, as well as the anti-flaviviral activities for the West Nile (WNV) and Zika (ZIKV) viruses.

View Article and Find Full Text PDF

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability.

View Article and Find Full Text PDF

Leishmaniasis is a poverty-related disease endemic in 98 countries worldwide, with morbidity and mortality increasing daily. All currently used first-line and second-line drugs for the treatment of leishmaniasis exhibit several drawbacks including toxicity, high costs and route of administration. Consequently, the development of new treatments for leishmaniasis is a priority in the field of neglected tropical diseases.

View Article and Find Full Text PDF

We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity.

View Article and Find Full Text PDF

Quantitative Structure - Activity Relationship (QSAR) modeling has been widely used in medicinal chemistry and computational toxicology for many years. Today, as the amount of chemicals is increasing dramatically, QSAR methods have become pivotal for the purpose of handling the data, identifying a decision, and gathering useful information from data processing. The advances in this field have paved a way for numerous alternative approaches that require deep mathematics in order to enhance the learning capability of QSAR models.

View Article and Find Full Text PDF

Several descriptors from atom weighted vectors are used in the prediction of aquatic toxicity of set of organic compounds of 392 benzene derivatives to the protozoo ciliate Tetrahymena pyriformis (log(IGC50)). These descriptors are calculated using the MD-LOVIs software and various Aggregation Operators are examined with the aim comparing their performances in predicting aquatic toxicity. Variability analysis is used to quantify the information content of these molecular descriptors by means of an information theory-based algorithm.

View Article and Find Full Text PDF

The phenols are structurally heterogeneous pollutants and they present a variety of modes of toxic action (MOA), including polar narcotics, weak acid respiratory uncouplers, pro-electrophiles, and soft electrophiles. Because it is often difficult to determine correctly the mechanism of action of a compound, quantitative structure-activity relationship (QSAR) methods, which have proved their interest in toxicity prediction, can be used. In this work, several QSAR models for the prediction of MOA of 221 phenols to the ciliated protozoan Tetrahymena pyriformis, using Chemistry Development Kit descriptors, are reported.

View Article and Find Full Text PDF

Background: There are a great number of tools that can be used in QSAR/QSPR studies; they are implemented in several programs that are reviewed in this report. The usefulness of new tools can be proved through comparison, with previously published approaches. In order to perform the comparison, the most usual is the use of several benchmark datasets such as DRAGON and Sutherland's datasets.

View Article and Find Full Text PDF

Background & Objectives: Aedes aegypti is an important vector for transmission of dengue, yellow fever, chikun- gunya, arthritis, and Zika fever. According to the World Health Organization, it is estimated that Ae. aegypti causes 50 million infections and 25,000 deaths per year.

View Article and Find Full Text PDF

Background: To know the ability of a compound to penetrate the blood-brain barrier (BBB) is a challenging task; despite the numerous efforts realized to predict/measure BBB passage, they still have several drawbacks.

Method: The prediction of the permeability through the BBB is carried out using classification trees. A large data set of 497 compounds (recently published) is selected to develop the tree model.

View Article and Find Full Text PDF

In this article, the modeling of inhibitory grown activity against Tetrahymena pyriformis is described. The 0-2D Dragon descriptors based on structural aspects to gain some knowledge of factors influencing aquatic toxicity are mainly used. Besides, it is done by some enlarged data of phenol derivatives described for the first time and composed of 358 chemicals.

View Article and Find Full Text PDF
Article Synopsis
  • QSAR studies have been developed to predict acute toxicity for various organisms, but there remains a gap in predicting toxicity specifically for the protozoan Tetrahymena pyriformis according to OECD principles.
  • Atom-based quadratic indices were used to create QSAR models using a dataset of 392 substituted benzenes' toxicity values, which were split into training and test sets for model validation.
  • The resulting models showed strong predictive capability and robustness, suggesting that these indices could serve as a more efficient alternative to traditional, costly toxicity experiments.
View Article and Find Full Text PDF

Two-dimensional bond-based bilinear indices and linear discriminant analysis are used in this report to perform a quantitative structure-activity relationship study to identify new trypanosomicidal compounds. A data set of 440 organic chemicals, 143 with antitrypanosomal activity and 297 having other clinical uses, is used to develop the theoretical models. Two discriminant models, computed using bond-based bilinear indices, are developed and both show accuracies higher than 86% for training and test sets.

View Article and Find Full Text PDF