Publications by authors named "Casteran N"

Masitinib, a highly selective protein kinase inhibitor, can sensitise gemcitabine-refractory cancer cell lines when used in combination with gemcitabine. Here we report a reverse proteomic approach that identifies the target responsible for this sensitisation: the deoxycytidine kinase (dCK). Masitinib, as well as other protein kinase inhibitors, such as imatinib, interact with dCK and provoke an unforeseen conformational-dependent activation of this nucleoside kinase, modulating phosphorylation of nucleoside analogue drugs.

View Article and Find Full Text PDF

Background: Tyrosine kinases are attractive targets for pancreatic cancer therapy because several are over-expressed, including PDGFRalpha/beta, FAK, Src and Lyn. A critical role of mast cells in the development of pancreatic cancer has also been reported. Masitinib is a tyrosine kinase inhibitor that selectively targets c-Kit, PDGFRalpha/beta, Lyn, and to a lesser extent the FAK pathway, without inhibiting kinases of known toxicities.

View Article and Find Full Text PDF

Background: The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT.

Methodology/principal Findings: In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC(50)) of 200+/-40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC(50) of 150+/-80 nM in Ba/F3 cells expressing human or mouse wild-type KIT.

View Article and Find Full Text PDF

Mutations of KIT receptor tyrosine kinase are found in the majority of patients with mastocytosis and in most gastrointestinal stromal tumors. Oncogenic KIT mutations in GISTs are located in the KIT juxtamembrane domain (JMD), while codon 816 in the KIT kinase domain is mutated in systemic mastocytosis. We describe and characterize a mutation in the KIT-JMD named Kdelta27.

View Article and Find Full Text PDF

Systemic mastocytosis (SM) is a rare disease caused by an abnormal mast cell accumulation in various tissues. Two classes of constitutive activating c-kit mutations are found in SM. The most frequent class occurs in the catalytic pocket coding region with substitutions at codon 816 and the other in the intracellular juxtamembrane coding region.

View Article and Find Full Text PDF

Previous studies have demonstrated that activation of Kit by stem cell factor (SCF), its natural ligand, or by gain-of-function point mutation in its intracellular domain, confers significant protection against apoptosis induced by growth factor deprivation or radiation. However, the effects of Kit activation on the cellular response to anti-tumor agents have not been so extensively documented. This study shows that daunorubicin-induced apoptosis and cytotoxicity were reduced in the murine Ba/F3 cells transfected with Kit (Ba/F3-Kit) in the presence of SCF and in Ba/F3 cells transfected with a constitutively active Kit variant (Ba/F3-KitDelta27), compared to either parental Ba/F3 (Ba/F3-wt) or unstimulated Ba/F3-Kit cells.

View Article and Find Full Text PDF

The smallest unit of bacterial peptidoglycans known to be endowed with biological activities is muramyl dipeptide (MDP). A clinically acceptable synthetic derivative of MDP, namely murabutide (MB), has been found to present interesting pharmacological properties and to suppress HIV-1 replication in monocyte-derived macrophages (MDM). We have addressed the signaling events activated in MDM following stimulation with either MB or the potent immunostimulant LPS.

View Article and Find Full Text PDF

We have previously observed that the synthetic immunomodulator Murabutide inhibits human immunodeficiency virus type 1 (HIV-1) replication at multiple levels in macrophages and dendritic cells. The present study was designed to profile the activity of Murabutide on CD8-depleted phytohemagglutinin-activated lymphocytes from HIV-1-infected subjects and on the outcome of HIV-1 infection in severe combined immunodeficiency mice reconstituted with human peripheral blood leukocytes (hu-PBL-SCID mice). Maintaining cultures of CD8-depleted blasts from 36 patients in the presence of Murabutide produced dramatically reduced levels of viral p24 protein in the supernatants.

View Article and Find Full Text PDF

Development of the hematopoietic lineages is partially under the control of hematopoietic receptors with tyrosine kinase activity (RTK). To compare the cellular functions of two of the class III RTK, FLT3 and KIT, a murine chimeric FMS/FLT3 (FF3) receptor was expressed ectopically using retroviral infection, in normal IL3-derived cultured mast cells. Stimulation of the chimeric receptor produced a full mitogenic signal and led to mast cell maturation, as occurs upon activation of the endogenous KIT receptor.

View Article and Find Full Text PDF

Flt3/Flk2 is a receptor tyrosine kinase that is expressed on early hematopoietic progenitor cells. Flt3/Flk2 belongs to a family of receptors, including Kit and colony-stimulating factor-1R, which support growth and differentiation within the hematopoietic system. The Flt3/Flk2 ligand, in combination with other growth factors, stimulates the proliferation of hematopoietic progenitors of both lymphoid and myeloid lineages in vitro.

View Article and Find Full Text PDF

Flt3 is a receptor tyrosine kinase (RTK) structurally related to the CSF-1R encoded by the c-fms locus, Kit and the PDGFR which is restricted in its expression to hematopoietic precursor populations and several distinct cell types within the central nervous system. Although the ligand for Flt3 has recently been identified, the developmental function of Flt3 within these tissues has not yet been described. In order to examine the signalling properties of this receptor, we previously constructed a chimeric molecule containing the extracellular domain of CSF-1R fused to the transmembrane and cytoplasmic domain of mouse Flt3 (FF3).

View Article and Find Full Text PDF

The FLT3 receptor tyrosine kinase (RTK) belongs to the class III subfamily which includes PDGF, CSF1 and SLF receptors. The recent cloning of the FLT3 ligand suggesting its important role in the differentiation and proliferation of the hematopoietic stem cells, has confirmed the initial expression analysis showing restricted pattern of receptor expression within the primitive hematopoietic population. To better understand the function of the FLT3 receptor and its relationship with the other hematopoietic RTKs, we analyzed the mitogenic pathway and substrate specificity of this receptor.

View Article and Find Full Text PDF

We have designed a convenient procedure for the analysis of V beta repertoire expression in polyclonal T-cell populations. In this procedure T-cell RNA is converted to cDNA, polydC-tailed with terminal deoxynucleotidyl transferase and submitted to one-side specificity PCR amplification with a constant region oligonucleotide primer. The amplified material is then analysed by reverse spot-test hybridization: after 32P-labelling, the amplification product is put to hybridize on a membrane where specially designed V beta subfamily-specific probes are immobilized.

View Article and Find Full Text PDF