J Mater Chem C Mater
October 2024
Germanene is a two-dimensional topological insulator with a large topological band gap. For its use in low-energy electronics, such as topological field effect transistors and interconnects, it is essential that its topological edge states remain intact at room temperature. In this study, we examine these properties in germanene using scanning tunneling microscopy and spectroscopy at 300 K and compare the results with data obtained at 77 K.
View Article and Find Full Text PDFIntroduction: As the only market-authorized allergen immunotherapy (AIT) for peanut allergy is accompanied by a high risk of side effects and mainly induces robust desensitization without sustained efficacy, novel treatment options are required. Peanut-specific plant-derived Bioparticles (BPs) surface expressing Ara h 2 at high density have been shown to be very hypoallergenic. Here, we assessed the dendritic cell (DC)-activating and T cell polarization capacity of these peanut-specific BPs.
View Article and Find Full Text PDFWe present the first experimental evidence of a topological phase transition in a monoelemental quantum spin Hall insulator. Particularly, we show that low-buckled epitaxial germanene is a quantum spin Hall insulator with a large bulk gap and robust metallic edges. Applying a critical perpendicular electric field closes the topological gap and makes germanene a Dirac semimetal.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2023
The Ge(110) surface reconstructs into ordered and disordered phases, in which the basic unit is a five-membered ring of Ge atoms (pentagon). The variety of surface reconstructions leads to a rich electronic density of states with several surface states. Using scanning tunneling microscopy and spectroscopy, we have identified the exact origins of these surface states and linked them to either the Ge pentagons or the underlying Ge-Ge bonds.
View Article and Find Full Text PDFDendritic cells (DCs) control adaptive immunity and are therefore attractive for in vivo targeting to either induce immune activation or tolerance, depending on disease. Liposomes, nanoparticles comprised of a lipid bi-layer, provide a nanoplatform for loading disease-relevant antigen, adjuvant and DC-targeting molecules simultaneously. However, it is yet not fully understood how liposomal formulations affect uptake by DCs and DC function.
View Article and Find Full Text PDFDendritic cells (DCs) are well-established as major players in the regulation of immune responses. They either induce inflammatory or tolerogenic responses, depending on the DC-subtype and stimuli they receive from the local environment. This dual capacity of DCs has raised therapeutic interest for their use to modify immune-activation the generation of tolerogenic DCs (tolDCs).
View Article and Find Full Text PDFTubular ATP release is regulated by mechanosensation of fluid shear stress (FSS). Polycystin-1/polycystin-2 (PC1/PC2) functions as a mechanosensory complex in the kidney. Extracellular ATP is implicated in polycystic kidney disease (PKD), where PC1/PC2 is dysfunctional.
View Article and Find Full Text PDFThe kidney is a remarkable organ that accomplishes the challenge of removing waste from the body and simultaneously regulating electrolyte and water balance. Pro-urine flows through the nephron in a highly dynamic manner and adjustment of the reabsorption rates of water and ions to the variable tubular flow is required for electrolyte homeostasis. Renal epithelial cells sense the tubular flow by mechanosensation.
View Article and Find Full Text PDFPolycomb Group (PcG) genes are transcriptional repressors that are described to be important during development and differentiation. There is significant interest in PcGs proteins because of their role in stem cell biology and tumorigenesis. In this study we characterize the expression of a selection of PcG genes in the adult germline of zebrafish and during embryogenesis.
View Article and Find Full Text PDF