Mutations in the TUBB3 gene, encoding β-tubulin isotype III, were recently shown to be associated with various neurological syndromes which all have in common the ocular motility disorder, congenital fibrosis of the extraocular muscle type 3 (CFEOM3). Surprisingly and in contrast to previously described TUBA1A and TUBB2B phenotypes, no evidence of dysfunctional neuronal migration and cortical organization was reported. In our study, we report the discovery of six novel missense mutations in the TUBB3 gene, including one fetal case and one homozygous variation, in nine patients that all share cortical disorganization, axonal abnormalities associated with pontocerebellar hypoplasia, but with no ocular motility defects, CFEOM3.
View Article and Find Full Text PDFPolymicrogyria is a relatively common but poorly understood defect of cortical development characterized by numerous small gyri and a thick disorganized cortical plate lacking normal lamination. Here we report de novo mutations in a beta-tubulin gene, TUBB2B, in four individuals and a 27-gestational-week fetus with bilateral asymmetrical polymicrogyria. Neuropathological examination of the fetus revealed an absence of cortical lamination associated with the presence of ectopic neuronal cells in the white matter and in the leptomeningeal spaces due to breaches in the pial basement membrane.
View Article and Find Full Text PDFBrain Res Mol Brain Res
March 2004
Recent human genetics approaches identified the Aristaless-related homeobox (ARX) gene as the causative gene in X-linked infantile spasms, Partington syndrome, and non-syndromic mental retardation as well as in forms of lissencephaly with abnormal genitalia. The ARX predicted protein belongs to a large family of homeoproteins and is characterised by a C-terminal Aristaless domain and an octapeptide domain near the N-terminus. In order to learn more about ARX function, we have studied in detail Arx expression in the central nervous system during mouse embryonic development as well as in the adult.
View Article and Find Full Text PDFAmong all vectors designed for gene therapy purposes, adenovirus appears to be the most efficient in vivo vehicle to transduce the broadest spectrum of cellular targets. However, the deleterious immunogenicity of this viral vector impedes its use in chronic diseases. Non-viral vectors, such as naked DNA, are attractive alternatives for safety and technical issues, such as scale-up production.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is mainly a sporadic neurodegenerative disorder characterized by loss of cortical and spinal motoneurons. Some familial ALS cases (FALS) have been linked to dominant mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Transgenic mice overexpressing a mutated form of human SOD1 with a Gly93Ala substitution develop progressive muscle wasting and paralysis as a result of spinal motoneuron loss and die at 5 to 6 months.
View Article and Find Full Text PDFCardiotrophin-1 (CT-1) is a potent neurotrophic factor for motoneurons but its clinical use in motor neuron diseases is precluded by side effects on the heart and liver. We explored the possibility of targeting CT-1 to neurons by coupling with the tetanus toxin fragment TTC. Genetic fusion proteins between CT-1 or GFP and TTC were produced in Escherichia coli and assayed in vitro.
View Article and Find Full Text PDFCardiotrophin-1 (CT-1), an IL-6-related cytokine, causes hypertrophy of cardiac myocytes and has pleiotropic effects on various other cell types, including motoneurons. Here, we analyzed systemic CT-1 effects in progressive motor neuronopathy (pmn) mice that suffer from progressive motoneuronal degeneration, muscle paralysis, and premature death. Administration of an adenoviral CT-1 vector to newborn pmn mice leads to sustained CT-1 expression in the injected muscles and bloodstream, prolonged survival of animals, and improved motor functions.
View Article and Find Full Text PDFSeveral neurotrophic factors (CNTF, BDNF, IGF-1) have been suggested for the treatment of motor neuron diseases. In ALS patients, however, the repeated subcutaneous injection of these factors as recombinant proteins is complicated by their toxicity or poor bioavailability. We have constructed an adenovirus vector coding for neurotrophin-3 (AdNT-3) allowing for stable and/or targeted delivery of NT-3 to motoneurons.
View Article and Find Full Text PDFTay-Sachs disease is a severe neurodegenerative disorder due to mutations in the HEXA gene coding for the alpha-chain of the alpha-beta heterodimeric lysosomal enzyme beta-hexosaminidase A (HexA). Because no treatment is available for this disease, we have investigated the possibility of enzymatic correction of HexA-deficient cells by HEXA gene transfer. Human HEXA cDNA was subcloned into a retroviral plasmid generating to G.
View Article and Find Full Text PDF