Publications by authors named "Castaing J"

Cell motility universally relies on spatial regulation of focal adhesion complexes (FAs) connecting the substrate to cellular motors. In bacterial FAs, the Adventurous gliding motility machinery (Agl-Glt) assembles at the leading cell pole following a Mutual gliding-motility protein (MglA)-guanosine 5'-triphosphate (GTP) gradient along the cell axis. Here, we show that GltJ, a machinery membrane protein, contains cytosolic motifs binding MglA-GTP and AglZ and recruiting the MreB cytoskeleton to initiate movement toward the lagging cell pole.

View Article and Find Full Text PDF

There is limited information on the compared performances of biological, serological. and molecular assays with high-throughput sequencing (HTS) for viral indexing in temperate fruit crops. Here, using a range of samples of predetermined virological status, we compared two performance criteria (inclusivity and analytical sensitivity) of enzyme-linked immunosorbent assay (ELISA), molecular hybridization, reverse transcription (RT)-PCR, and double-stranded RNA (dsRNA) HTS for the detection of a total of 14 viruses (10 genera) and four viroids (three genera).

View Article and Find Full Text PDF

Bacterial cell motility is essential for a range of physiological phenomena such as nutrient sensing, predation, biofilm formation and pathogenesis. One of the most intriguing motilities is bacterial gliding, which is defined as the ability of some bacteria to move across surfaces without an external appendage. In Myxococcus xanthus, gliding motility depends on the assembly of focal adhesion complexes (FAC) which include the Glt mutiprotein complex and allow directional movement of individual cells (A-motility).

View Article and Find Full Text PDF

We investigate certain aspects of the physical mechanisms of root growth in a granular medium and how these roots adapt to changes in water distribution induced by the presence of structural inhomogeneities in the form of solid intrusions. Physical intrusions such as a square rod added into the 2D granular medium maintain robust capillary action, pumping water from the more saturated areas at the bottom of the cell towards the less saturated areas near the top of the cell while the rest of the medium is slowly devoid of water via evaporation. The intrusion induces "preferential tropism" of roots by first generating a humidity gradient that attracts the root to grow towards it.

View Article and Find Full Text PDF

We characterize the water repartition within the partially saturated (two-phase) zone (PSZ) during evaporation from mixed wettable porous media by controlling the wettability of glass beads, their sizes, and as well the surrounding relative humidity. Here, capillary numbers are low and under these conditions, the percolating front is stabilized by gravity. Using experimental and numerical analyses, we find that the PSZ saturation decreases with the Bond number, where packing of smaller particles have higher saturation values than packing made of larger particles.

View Article and Find Full Text PDF

In Myxococcus xanthus the gliding motility machinery is assembled at the leading cell pole to form focal adhesions, translocated rearward to propel the cell, and disassembled at the lagging pole. We show that MglA, a Ras-like small G-protein, is an integral part of this machinery. In this function, MglA stimulates the assembly of the motility complex by directly connecting it to the MreB actin cytoskeleton.

View Article and Find Full Text PDF

Dormant bacterial spores are encased in a thick protein shell, the 'coat', which contains ∼70 different proteins. The coat protects the spore from environmental insults, and is among the most durable static structures in biology. Owing to extensive cross-linking among coat proteins, this structure has been recalcitrant to detailed biochemical analysis, so molecular details of how it assembles are largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • In Bacillus subtilis, a bacteria, proteins that sense membrane curvature localize to specific areas, with SpoVM targeting the forespore, a unique convex structure during sporulation.
  • This study reveals that SpoVM's unique α-helix deeply inserts into membranes, allowing it to recognize and bind to slightly convex surfaces due to interactions with lipid molecules.
  • The findings suggest that the localization process of SpoVM may be different from other curvature-sensing proteins and could be a conserved mechanism for how proteins attach to various cellular structures.
View Article and Find Full Text PDF

Evaporation of water out of a soil involves complicated and well-debated mechanisms. When plant roots are added into the soil, water transfer between the soil and the outside environment is even more complicated. Indeed, plants provide an additional process of water transfer.

View Article and Find Full Text PDF

Study of prehistoric art is playing a major role in the knowledge of human evolution. Many scientific methods are involved in this investigation including chemical analysis of pigments present on artefacts or applied to cave walls. In the past decades, the characterization of coloured materials was carried on by taking small samples.

View Article and Find Full Text PDF

Spores of Bacillus subtilis are dormant cell types that are formed when the bacterium encounters starvation conditions. Spores are encased in a shell, termed the coat, which is composed of approximately seventy different proteins and protects the spore's genetic material from environmental insults. The structural component of the basement layer of the coat is an exceptional cytoskeletal protein, termed SpoIVA, which binds and hydrolyzes ATP.

View Article and Find Full Text PDF

Sixteen cases in which a ligamentoplasty using the peroneus brevis were followed up for more than 8 years. In half of the cases, dorsiflexion of the ankle was diminished and the subtalar joint was stiff. There was no anterior drawer sign of the talus.

View Article and Find Full Text PDF

The assembly of static supramolecular structures is a culminating event of developmental programs. One such structure, the proteinaceous shell (called the coat) that surrounds spores of the bacterium Bacillus subtilis, is composed of about 70 different proteins and represents one of the most durable biological structures known. The coat is built atop a basement layer that contains an ATPase (SpoIVA) that forms a platform required for coat assembly.

View Article and Find Full Text PDF

The synthesis and detailed characterization of gold nanoparticles (AuNPs) inside human hair has been achieved by treatment of hair with HAuCl(4) in alkaline medium. The AuNPs, which show a strong red fluorescence under blue light, are generated inside the fiber and are arranged in the cortex in a remarkably regular pattern of whorls based on concentric circles, like a fingerprint. It opens an area of genuine nanocomposites with novel properties due to AuNPs inside the hair shaft.

View Article and Find Full Text PDF

In this study, a sand filter was used to remove micro-algae from seawater feeding aquaculture ponds. A lab-scale sand filter was used to filter 30,000 cells/mL of Heterocapsa triquetra suspension, a non-toxic micro-alga that has morphological and dimensional (15-20 microm) similarities with Alexandrium sp., one of the smallest toxic micro-algae in seawater.

View Article and Find Full Text PDF

This paper presents the novel application of recently developed analytical techniques to the study of paint layers on sculptures that have been restored/repainted several times across centuries. Analyses were performed using portable XRF, μ-XRD and μ-Raman instruments. Other techniques, such as optical microscopy, SEM-EDX and μ-FTIR, were also used.

View Article and Find Full Text PDF

A portable X-ray fluorescence/X-ray diffraction (XRF/XRD) system for artwork studies has been designed constructed and tested. It is based on Debye Scherrer XRD in reflection that takes advantage of many recent improvements in the handling of X-rays (polycapillary optics; advanced two-dimensional detection). The apparatus is based on a copper anode air cooled X-ray source, and the XRD analysis is performed on a 5-20 μm thick layer from the object surface.

View Article and Find Full Text PDF

Illuminated Arabic manuscripts have been studied, employing two laboratory-made X-ray diffraction (XRD) systems developed recently in the C2RMF laboratory. The validity of the micro-XRD and XRD portable systems for the study of this type of artworks has been demonstrated. A common observation in all the analyses is the presence of calcite and rutile; also, hematite, goethite, cinnabar, brass, anatase and barite were detected in the various colours.

View Article and Find Full Text PDF

The X-ray fluorescence (XRF) technique is a common choice in the archaeometric field for in situ investigations with portable instruments. This work shows that XRF portable systems can be used for quantitative analyses using appropriate software, obtaining a similar accuracy to that provided with other techniques such as particle-induced X-ray emission (PIXE), as shown for an Egyptian faience pendant and for two glass standards.

View Article and Find Full Text PDF

Rare earth cerium oxide (ceria) nanoparticles are stabilized using end-functional phosphonated-PEG oligomers. The complexation process and structure of the resulting hybrid core-shell singlet nanocolloids are described, characterized, and modeled using light and neutron scattering data. The adsorption mechanism is nonstoichiometric, yielding the number of adsorbed chains per particle N(ads) = 270 at saturation.

View Article and Find Full Text PDF

Water-soluble clusters made from 7-nm inorganic nanoparticles have been investigated by small-angle neutron scattering. The internal structure factor of the clusters was derived and exhibited a universal behavior as evidenced by a correlation hole at intermediate wave vectors. Reverse Monte Carlo calculations were performed to adjust the data and provided an accurate description of the clusters in terms of interparticle distance and volume fraction.

View Article and Find Full Text PDF

Bacterial ATPases belonging to the ParA family assure partition of their replicons by forming dynamic assemblies which move replicon copies into the new cell-halves. The mechanism underlying partition is not understood for the Walker-box ATPase class, which includes most plasmid and all chromosomal ParAs. The ATPases studied both polymerize and interact with non-specific DNA in an ATP-dependent manner.

View Article and Find Full Text PDF

We report the co-assembly and adsorption properties of coacervate complexes made from polyelectrolyte-neutral block copolymers and oppositely charged nanocolloids. The nanocolloids put under scrutiny were ionic surfactant micelles and highly charged 7 nm cerium oxide (CeO2) nanoparticles. Static and dynamic light scattering was used to investigate the microstructure and stability of the organic and hybrid complexes.

View Article and Find Full Text PDF

We report the presence of a correlation between the bulk and interfacial properties of electrostatic coacervate complexes. Complexes were obtained by co-assembly between cationic-neutral diblocks and oppositely charged surfactant micelles or 7 nm cerium oxide nanoparticles. Light scattering and reflectometry measurements revealed that the hybrid nanoparticle aggregates were more stable through both dilution and rinsing (from either a polystyrene or a silica surface) than their surfactant counterparts.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how three strains of green microalgae (Klebsormidium flaccidum, Stichococcus bacillaris, and Chlorella cf. mirabilis) adhere to different surfaces using a parallel plate flow chamber.
  • The model surfaces included glass slides and modified surfaces with different chemical groups, specifically -CH(3) and -NH(2), which were characterized using techniques like X-ray photoelectron spectroscopy and contact angle measurements.
  • Findings indicated that the adhesion strength of the algal strains was highest on -NH(2) surfaces, followed by -CH(3), with glass having the weakest adhesion, influenced by factors like hydrophobicity, electrostatics
View Article and Find Full Text PDF