Background: Growing evidence shows that the reprogramming of fatty acid (FA) metabolism plays a key role in HER2-positive (HER2 +) breast cancer (BC) aggressiveness, therapy resistance and cancer stemness. In particular, HER2 + BC has been defined as a "lipogenic disease" due to the functional and bi-directional crosstalk occurring between HER2-mediated oncogenic signaling and FA biosynthesis via FA synthase activity. In this context, the functional role exerted by the reprogramming of CD36-mediated FA uptake in HER2 + BC poor prognosis and therapy resistance remains unclear.
View Article and Find Full Text PDFBackground: A reliable preclinical model of patient-derived organoids (PDOs) was developed in a case study of a 69-year-old woman diagnosed with breast cancer (BC) to investigate the tumour evolution before and after neoadjuvant chemotherapy and surgery. The results were achieved due to the development of PDOs from tissues collected before (O-PRE) and after (O-POST) treatment.
Methods: PDO cultures were characterized by histology, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), confocal microscopy, flow cytometry, real-time PCR, bulk RNA-seq, single-cell RNA sequencing (scRNA-seq) and drug screening.
Autism spectrum disorder (ASD) comprises a large group of neurodevelopmental conditions featuring, over a wide range of severity and combinations, a core set of manifestations (restricted sociality, stereotyped behavior and language impairment) alongside various comorbidities. Common and rare variants in several hundreds of genes and regulatory regions have been implicated in the molecular pathogenesis of ASD along a range of causation evidence strength. Despite significant progress in elucidating the impact of few paradigmatic individual loci, such sheer complexity in the genetic architecture underlying ASD as a whole has hampered the identification of convergent actionable hubs hypothesized to relay between the vastness of risk alleles and the core phenotypes.
View Article and Find Full Text PDFPurpose: Trastuzumab is an HER2-specific agent approved as the gold-standard therapy for advanced HER2-positive (HER2+) gastric cancer (GC), but the high rate and rapid appearance of resistance limit its clinical efficacy, resulting in the need to identify new vulnerabilities. Defining the drivers influencing HER2+ cancer stem cell (CSC) maintenance/survival could represent a clinically useful strategy to counteract tumor growth and therapy resistance. Accumulating evidence show that targeting crucial metabolic hubs, as the fatty acid synthase (FASN), may be clinically relevant.
View Article and Find Full Text PDFPurpose: In JACOB trial, pertuzumab added to trastuzumab-chemotherapy did not significantly improve survival of patients with HER2-positive metastatic gastric cancer, despite 3.3 months increase versus placebo. HER2 copy-number variation (CNV) and AMNESIA panel encompassing primary resistance alterations (KRAS/PIK3CA/MET mutations, KRAS/EGFR/MET amplifications) may improve patients' selection for HER2 inhibition.
View Article and Find Full Text PDFThe SIGnaling Network Open Resource (SIGNOR 3.0, https://signor.uniroma2.
View Article and Find Full Text PDFBackground: Despite huge efforts to identify biomarkers associated with long-term clinical outcomes in patients with early-stage HER2-positive breast cancer (HER2+ BC) treated with (neo)adjuvant anti-HER2 therapy, no reliable predictors have been identified so far. Fatty acid uptake, a process mediated by the transmembrane transporter CD36, has recently emerged as a potential determinant of resistance to anti-HER2 treatments in preclinical HER2+ BC models.
Methods: Here, we investigated the association between baseline intratumor CD36 gene expression and event-free survival in 180 patients enrolled in the phase III trial Neoadjuvant Lapatinib and/or Trastuzumab Treatment Optimization (NeoALTTO), which randomly assigned stage II-III HER2+ BC patients to receive neoadjuvant lapatinib, trastuzumab, or lapatinib-trastuzumab in combination with chemotherapy.
Some inherited or somatically-acquired gene variants are observed significantly more frequently in the genome of cancer cells. Although many of these cannot be confidently classified as driver mutations, they may contribute to shaping a cell environment that favours cancer onset and development. Understanding how these gene variants causally affect cancer phenotypes may help developing strategies for reverting the disease phenotype.
View Article and Find Full Text PDFBackground: The transcriptional repressor B-cell lymphoma 6 (BCL6) is dysregulated in several neoplasms, but its role in triple negative breast cancer (TNBC), a highly aggressive subtype which lacks effective treatment, is unclear. The presence of intratumoral cancer stem cells (CSCs) is a main cause of tumor relapse. The Notch signaling pathway is crucial for regulating CSC self-renewal and promoting breast cancer (BC) development and resistance to anticancer therapies.
View Article and Find Full Text PDFRepurposing of drugs for new therapeutic use has received considerable attention for its potential to limit time and cost of drug development. Here we present a new strategy to identify chemicals that are likely to promote a desired phenotype. We used data from the Connectivity Map (CMap) to produce a ranked list of drugs according to their potential to activate transcription factors that mediate myeloid differentiation of leukemic progenitor cells.
View Article and Find Full Text PDFHER2 overexpression/amplification occurs in 15-20% of breast cancers (BCs) and identifies a highly aggressive BC subtype. Recent clinical progress has increased the cure rates of limited-stage HER2-positive BC and significantly prolonged overall survival in patients with advanced disease; however, drug resistance and tumor recurrence remain major concerns. Therefore, there is an urgent need to increase knowledge regarding HER2 biology and implement available treatments.
View Article and Find Full Text PDFRepeated mechanical stress causes injuries in the adult skeletal muscle that need to be repaired. Although muscle regeneration is a highly efficient process, it fails in some pathological conditions, compromising tissue functionality. This may be caused by aberrant cell-cell communication, resulting in the deposition of fibrotic and adipose infiltrates.
View Article and Find Full Text PDFDe novo or acquired resistance of cancer cells to currently available Human Epidermal Growth Factor Receptor 2 (HER2) inhibitors represents a clinical challenge. Several resistance mechanisms have been identified in recent years, with lipid metabolism reprogramming, a well-established hallmark of cancer, representing the last frontier of preclinical and clinical research in this field. Fatty Acid Synthase (FASN), the key enzyme required for fatty acids (FAs) biosynthesis, is frequently overexpressed/activated in HER2-positive (HER2+) breast cancer (BC), and it crucially sustains HER2+ BC cell growth, proliferation and survival.
View Article and Find Full Text PDFBackground: High body mass index (BMI) has been associated with worse clinical outcomes in patients with early-stage breast cancer (BC), and its negative effects could be mediated by hyperglycemia/diabetes. However, the prognostic impact of high BMI in early-stage HER2-positive (HER2+) BC patients remains controversial.
Methods: We conducted a retrospective study to investigate the impact of baseline BMI or glycemia on relapse-free survival (RFS) and overall survival (OS) in patients with surgically resected, stage I-III HER2+ BC treated with standard-of-care, trastuzumab-containing adjuvant biochemotherapy.
The coronavirus disease 2019 (COVID-19) pandemic has caused more than 2.3 million casualties worldwide and the lack of effective treatments is a major health concern. The development of targeted drugs is held back due to a limited understanding of the molecular mechanisms underlying the perturbation of cell physiology observed after viral infection.
View Article and Find Full Text PDFPurpose: The mTOR complex C1 (mTORC1) inhibitor everolimus in combination with the aromatase inhibitor exemestane is an effective treatment for patients with hormone receptor-positive (HR), HER2-negative (HER2), advanced breast cancer (HR/HER2 aBC). However, everolimus can cause hyperglycemia and hyperinsulinemia, which could reactivate the PI3K/protein kinase B (AKT)/mTORC1 pathway and induce tumor resistance to everolimus.
Experimental Design: We conducted a multicenter, retrospective, Italian study to investigate the impact of baseline and on-treatment (i.
The embryonal rhabdomyosarcoma (eRMS) is a soft tissue sarcoma commonly affecting the head and neck, the extremities and the genitourinary tract. To contribute to revealing the cell types that may originate this tumor, we exploited mass cytometry, a single-cell technique that, by using heavy-metal-tagged antibodies, allows the accurate monitoring of the changes occurring in the mononuclear cell composition of skeletal muscle tissue during tumor development. To this end, we compared cell populations of healthy muscles with those from spatiotemporal-induced eRMS tumors in a mouse model (LSL-Kras;Tp53) that can be used to develop rhabdomyosarcoma by means of infection with an adenovirus vector expressing Cre (Ad-Cre) recombinase.
View Article and Find Full Text PDFThe importance of skeletal muscle tissue is undoubted being the controller of several vital functions including respiration and all voluntary locomotion activities. However, its regenerative capability is limited and significant tissue loss often leads to a chronic pathologic condition known as volumetric muscle loss. Here, we propose a biofabrication approach to rapidly restore skeletal muscle mass, 3D histoarchitecture, and functionality.
View Article and Find Full Text PDFHigh throughput technologies such as deep sequencing and proteomics are increasingly becoming mainstream in clinical practice and support diagnosis and patient stratification. Developing computational models that recapitulate cell physiology and its perturbations in disease is a required step to help with the interpretation of results of high content experiments and to devise personalized treatments. As complete cell-models are difficult to achieve, given limited experimental information and insurmountable computational problems, approximate approaches should be considered.
View Article and Find Full Text PDFThe term micro-heterogeneity refers to non-genetic cell to cell variability observed in a bell-shaped distribution of the expression of a trait within a population. The contribution of micro-heterogeneity to physiology and pathology remains largely uncharacterised. To address such an issue, we investigated the impact of heterogeneity in skeletal muscle fibro/adipogenic progenitors (FAPs) isolated from an animal model of Duchenne muscular dystrophy (DMD), the mdx mouse.
View Article and Find Full Text PDFBreast cancer (BC) is the most common tumour in women. Although the introduction of novel therapeutic approaches in clinical practice has dramatically improved the clinical outcome of BC patients, this malignant disease remains the second leading cause of cancer-related death worldwide. The wingless/integrated (Wnt) signalling pathway represents a crucial molecular node relevantly implicated in the regulation of normal somatic stem cells as well as cancer stem cell (CSC) traits and the epithelial-mesenchymal transition cell program.
View Article and Find Full Text PDFRNF11 (Ring Finger Protein 11) is a 154 amino-acid long protein that contains a RING-H2 domain, whose sequence has remained substantially unchanged throughout vertebrate evolution. RNF11 has drawn attention as a modulator of protein degradation by HECT E3 ligases. Indeed, the large number of substrates that are regulated by HECT ligases, such as ITCH, SMURF1/2, WWP1/2, and NEDD4, and their role in turning off the signaling by ubiquitin-mediated degradation, candidates RNF11 as the master regulator of a plethora of signaling pathways.
View Article and Find Full Text PDFFibro/Adipogenic Progenitors (FAPs) are muscle-interstitial progenitors mediating pro-myogenic signals that are critical for muscle homeostasis and regeneration. In myopathies, the autocrine/paracrine constraints controlling FAP adipogenesis are released causing fat infiltrates. Here, by combining pharmacological screening, high-dimensional mass cytometry and in silico network modeling with the integration of single-cell/bulk RNA sequencing data, we highlighted the canonical WNT/GSK/β-catenin signaling as a crucial pathway modulating FAP adipogenesis triggered by insulin signaling.
View Article and Find Full Text PDF