Background: As global awareness regarding climate change and environmental pollution outcomes arise, eco-friendly and negative emission technologies emerge.
Methods: In this scenario, polyhydroxyalkanoate (PHA)-accumulating microorganisms play an important role in the transition from the petrochemical-based non-biodegradable polymer to renewable, eco-friendly, and biocompatible materials. More specifically, CO can be converted to biopolymers through photosynthesis by cyanobacteria and algae, posing as a promising technology for renewable material, CO, and petroleum-dependence mitigations.
J Sci Food Agric
March 2022
Background: The fungus Agaricus subrufescens is grown commercially in China, the USA, Brazil, Taiwan and Japan, among others. However, each country adopts a cultivation system that significantly influences the agronomical parameters and chemical composition of the harvested mushrooms. In this study, the influence of the cultivation process on the content of ergosterol and vitamin D was evaluated.
View Article and Find Full Text PDFThe macroalga Gracilaria domingensis is an important resource for the food, pharmaceutical, cosmetic, and biotechnology industries. G. domingensis is at a part of the food web foundation, providing nutrients and microelements to upper levels.
View Article and Find Full Text PDFEnviron Toxicol Chem
November 2013
The present study reports a 48-h aquatic metal-toxicity assay based on daily growth rates of the red seaweed Gracilaria domingensis (Gracilariales, Rhodophyta) in synthetic seawater. The median inhibitory concentration (IC50) for each metal cation was experimentally determined, and the ratios of free ions (aqueous complex) were calculated by software minimization of the total equilibrium activity (MINTEQA2) to determine the free median inhibitory concentration (IC50F). A model for predicting the toxicity of 14 metal cations was developed using the generic function approximation algorithm (GFA) with log IC50F values as the dependent variables and the following properties as independent variables: ionic radius (r), atomic number (AN), electronegativity (Xm ), covalent index (Xm (2) r), first hydrolysis constant (|log KOH |), softness index (σp ), ion charge (Z), ionization potential (ΔIP), electrochemical potential (ΔEo ), atomic number divided by ionization potential (AN/ΔIP), and the cation polarizing power for Z(2) /r and Z/AR.
View Article and Find Full Text PDFA correlation between the physicochemical properties of mono- [Li(I), K(I), Na(I)] and divalent [Cd(II), Cu(II), Mn(II), Ni(II), Co(II), Zn(II), Mg(II), Ca(II)] metal cations and their toxicity (evaluated by the free ion median effective concentration, EC50(F)) to the naturally bioluminescent fungus Gerronema viridilucens has been studied using the quantitative ion character-activity relationship (QICAR) approach. Among the 11 ionic parameters used in the current study, a univariate model based on the covalent index (X(2) (m)r) proved to be the most adequate for prediction of fungal metal toxicity evaluated by the logarithm of free ion median effective concentration (log EC50(F)): log EC50(F) = 4.243 (± 0.
View Article and Find Full Text PDFMetal cation toxicity to basidiomycete fungi is poorly understood, despite its well-known importance in terrestrial ecosystems. Moreover, there is no reported methodology for the routine evaluation of metal toxicity to basidiomycetes. In the present study, we describe the development of a procedure to assess the acute toxicity of metal cations (Na(+), K(+), Li(+), Ca(2+),Mg(2+), Co(2+), Zn(2+), Ni(2+), Mn(2+), Cd(2+), and Cu(2+)) to the bioluminescent basidiomycete fungus Gerronema viridilucens.
View Article and Find Full Text PDF