The overlapping molecular pathophysiology of Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), and Frontotemporal Dementia (FTD) was analyzed using relationships from a knowledge graph of 33+ million biomedical journal articles. The unsupervised learning rank aggregation algorithm from SemNet 2.0 compared the most important amino acid, peptide, and protein (AAPP) nodes connected to AD, ALS, or FTD.
View Article and Find Full Text PDFProc Conf Empir Methods Nat Lang Process
December 2023
Biomedical entity linking (BioEL) is the process of connecting entities referenced in documents to entries in biomedical databases such as the Unified Medical Language System (UMLS) or Medical Subject Headings (MeSH). The study objective was to comprehensively evaluate nine recent state-of-the-art biomedical entity linking models under a unified framework. We compare these models along axes of (1) accuracy, (2) speed, (3) ease of use, (4) generalization, and (5) adaptability to new ontologies and datasets.
View Article and Find Full Text PDFProc IEEE Int Conf Acoust Speech Signal Process
June 2023
Seizure detection using machine learning is a critical problem for the timely intervention and management of epilepsy. We propose SeizFt, a robust seizure detection framework using EEG from a wearable device. It uses features paired with an ensemble of trees, thus enabling further interpretation of the model's results.
View Article and Find Full Text PDFThe Event Based Model (EBM) is a probabilistic generative model to explore biomarker changes occurring as a disease progresses. Disease progression is hypothesized to occur through a sequence of biomarker dysregulation "events". The EBM estimates the biomarker dysregulation event sequence.
View Article and Find Full Text PDFDiabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. This study's goal was to identify the signaling drivers and pathways that modulate glomerular endothelial dysfunction in DKD via artificial intelligence-enabled literature-based discovery. Cross-domain text mining of 33+ million PubMed articles was performed with SemNet 2.
View Article and Find Full Text PDFInformation (Basel)
January 2024
The ability to translate Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) into different modalities and data types is essential to improve Deep Learning (DL) for predictive medicine. This work presents DACMVA, a novel framework to conduct data augmentation in a cross-modal dataset by translating between modalities and oversampling imputations of missing data. DACMVA was inspired by previous work on the alignment of latent spaces in Autoencoders.
View Article and Find Full Text PDFBackground: Amyloid-β plaques (Aβ) are associated with Alzheimer's disease (AD). Pooled assessment of amyloid reduction in transgenic AD mice is critical for expediting anti-amyloid AD therapeutic research.
Objective: The mean threshold of Aβ reduction necessary to achieve cognitive improvement was measured via pooled assessment ( = 594 mice) of Morris water maze (MWM) escape latency of transgenic AD mice treated with substances intended to reduce Aβ via reduction of beta-secretase cleaving enzyme (BACE).
: Datasets on rare diseases, like pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), have small sample sizes that hinder machine learning (ML). The objective was to develop an interpretable ML framework to elucidate actionable insights from small tabular rare disease datasets. : The comprehensive framework employed optimized data imputation and sampling, supervised and unsupervised learning, and literature-based discovery (LBD).
View Article and Find Full Text PDFMultiple studies have reported new or exacerbated persistent or resistant hypertension in patients previously infected with COVID-19. We used literature-based discovery to identify and prioritize multi-scalar explanatory biology that relates resistant hypertension to COVID-19. Cross-domain text mining of 33+ million PubMed articles within a comprehensive knowledge graph was performed using SemNet 2.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) is treated with tyrosine kinase inhibitors (TKI) that target the pathological BCR-ABL1 fusion oncogene. The objective of this statistical meta-analysis was to assess the prevalence of other hematological adverse events (AEs) that occur during or after predominantly first-line treatment with TKIs. Data from seventy peer-reviewed, published studies were included in the analysis.
View Article and Find Full Text PDFBioengineering (Basel)
August 2023
This work presents SeizFt-a novel seizure detection framework that utilizes machine learning to automatically detect seizures using wearable SensorDot EEG data. Inspired by interpretable sleep staging, our novel approach employs a unique combination of data augmentation, meaningful feature extraction, and an ensemble of decision trees to improve resilience to variations in EEG and to increase the capacity to generalize to unseen data. Fourier Transform (FT) Surrogates were utilized to increase sample size and improve the class balance between labeled non-seizure and seizure epochs.
View Article and Find Full Text PDFParkinson's disease (PD) is a movement disorder caused by a dopamine deficit in the brain. Current therapies primarily focus on dopamine modulators or replacements, such as levodopa. Although dopamine replacement can help alleviate PD symptoms, therapies targeting the underlying neurodegenerative process are limited.
View Article and Find Full Text PDFAlzheimer's disease (AD) progresses through a lengthy asymptomatic period during which pathological changes accumulate prior to development of clinical symptoms. As disease-modifying treatments are developed, tools to stratify risk of clinical disease will be required to guide their use. In this study, we examine the relationship of AD biomarkers in healthy middle-aged individuals to health history, family history, and neuropsychological measures and identify cerebrospinal fluid (CSF) biomarkers to stratify risk of progression from asymptomatic to symptomatic AD.
View Article and Find Full Text PDFBackground: The complex and not yet fully understood etiology of Alzheimer's disease (AD) shows important proteopathic signs which are unlikely to be linked to a single protein. However, protein subsets from deep proteomic datasets can be useful in stratifying patient risk, identifying stage dependent disease markers, and suggesting possible disease mechanisms.
Objective: The objective was to identify protein subsets that best classify subjects into control, asymptomatic Alzheimer's disease (AsymAD), and AD.
Introduction: Amyotrophic Lateral Sclerosis (ALS) is a paralyzing, multifactorial neurodegenerative disease with limited therapeutics and no known cure. The study goal was to determine which pathophysiological treatment targets appear most beneficial.
Methods: A big data approach was used to analyze high copy SOD1 G93A experimental data.
Tyrosine kinase inhibitors (TKIs) are prescribed for chronic myeloid leukemia (CML) and some other cancers. The objective was to predict and rank TKI-related adverse events (AEs), including under-reported or preclinical AEs, using novel text mining. First, k-means clustering of 2575 clinical CML TKI abstracts separated TKIs by significant (p < 0.
View Article and Find Full Text PDFLiterature-based discovery (LBD) summarizes information and generates insight from large text corpuses. The SemNet framework utilizes a large heterogeneous information network or "knowledge graph" of nodes and edges to compute relatedness and rank concepts pertinent to a user-specified target. SemNet provides a way to perform multi-factorial and multi-scalar analysis of complex disease etiology and therapeutic identification using the 33+ million articles in PubMed.
View Article and Find Full Text PDFLarge networks are quintessential to bioinformatics, knowledge graphs, social network analysis, and graph-based learning. CompositeView is a Python-based open-source application that improves interactive complex network visualization and extraction of actionable insight. CompositeView utilizes specifically formatted input data to calculate composite scores and display them using the Cytoscape component of Dash.
View Article and Find Full Text PDFA major bottleneck preventing the extension of deep learning systems to new domains is the prohibitive cost of acquiring sufficient training labels. Alternatives such as weak supervision, active learning, and fine-tuning of pretrained models reduce this burden but require substantial human input to select a highly informative subset of instances or to curate labeling functions. REGAL (Rule-Enhanced Generative Active Learning) is an improved framework for weakly supervised text classification that performs active learning over labeling functions rather than individual instances.
View Article and Find Full Text PDFHeterogeneity among Alzheimer's disease (AD) patients confounds clinical trial patient selection and therapeutic efficacy evaluation. This work defines separable AD clinical sub-populations using unsupervised machine learning. Clustering (t-SNE followed by k-means) of patient features and association rule mining (ARM) was performed on the ADNIMERGE dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI).
View Article and Find Full Text PDFBackground: Apolipoprotein E (APOE) genotypes typically increase risk of amyloid-β deposition and onset of clinical Alzheimer's disease (AD). However, cognitive assessments in APOE transgenic AD mice have resulted in discord.
Objective: Analysis of 31 peer-reviewed AD APOE mouse publications (n = 3,045 mice) uncovered aggregate trends between age, APOE genotype, gender, modulatory treatments, and cognition.
Link prediction in artificial intelligence is used to identify missing links or derive future relationships that can occur in complex networks. A link prediction model was developed using the complex heterogeneous biomedical knowledge graph, SemNet, to predict missing links in biomedical literature for drug discovery. A web application visualized knowledge graph embeddings and link prediction results using TransE, CompleX, and RotatE based methods.
View Article and Find Full Text PDFTyrosine kinase inhibitors (TKIs) are the frontline therapy for BCR-ABL (Ph+) chronic myeloid leukemia (CML). A systematic meta-analysis of 43 peer-reviewed studies with 10,769 CML patients compared the incidence of gastrointestinal adverse events (GI AEs) in a large heterogeneous CML population as a function of TKI type. Incidence and severity of nausea, vomiting, and diarrhea were assessed for imatinib, dasatinib, bosutinib, and nilotinib.
View Article and Find Full Text PDFAssociations of modulators of quality of life (QoL) and survival duration are assessed in the fatal motor neuron disease, Amyotrophic Lateral Sclerosis. Major categories include clinical impression of mood (CIM); physical health; patient social support; and usage of interventions, pharmaceuticals, and supplements. Associations were assessed at < 0.
View Article and Find Full Text PDFThere is literature discord regarding the impact of percutaneous endoscopic gastrostomy (PEG), or "feeding tube", on amyotrophic lateral sclerosis (ALS) outcomes. We assess one of the largest retrospective ALS cohorts to date (278 PEG users, 679 non-users). Kruskal-Wallis and Kaplan-Meier analysis compared cohort medians and survival duration trends.
View Article and Find Full Text PDF