Publications by authors named "Cassidy R Prince"

Unlabelled: In bacteria, if a ribosome translates an mRNA lacking a stop codon it becomes stalled at the 3' end of the message. These ribosomes must be rescued by -translation or the alternative rescue factors (ArfA or ArfB). However, mounting evidence suggests that the ribosome quality control (RQC) pathway may also rescue non-stop ribosomes.

View Article and Find Full Text PDF

Polyproline motifs are essential structural features of many proteins, and recent evidence suggests that EF-P is one of several factors that facilitate their translation. For example, YfmR was recently identified as a protein that prevents ribosome stalling at proline-containing sequences in the absence of EF-P. Here, we show that the YebC-family protein YebC2 (formerly YeeI) functions as a translation factor in that resolves ribosome stalling at polyprolines.

View Article and Find Full Text PDF
Article Synopsis
  • RF2 is a special protein that helps stop the process of making proteins in bacteria.
  • Scientists studied a lot of bacteria to see how they use a special trick called frameshifting to control how much RF2 they make.
  • They found out that some bacteria don’t need this trick because they already produce the right amount of RF2, and using it too much can be harmful to them.
View Article and Find Full Text PDF
Article Synopsis
  • Ribosomes in bacteria often deal with incomplete or damaged mRNAs, and when they encounter non-stop mRNAs (lacking a stop codon), specialized rescue pathways are necessary to free them.
  • The most common method for this rescue is known as -translation, found in over 95% of bacterial genomes, while in Proteobacteria, proteins ArfA and ArfB play crucial roles when -translation is absent.
  • The study introduces RqcH, a ribosome quality control factor that tags stalled peptides to help clear them from the ribosome, suggesting that RqcH aids non-stop ribosome rescue and highlighting diverse rescue pathways in over 14,000 bacterial genomes.
View Article and Find Full Text PDF

Protein synthesis is performed by the ribosome and a host of highly conserved elongation factors. Elongation factor P (EF-P) prevents ribosome stalling at difficult-to-translate sequences, such as polyproline tracts. In bacteria, phenotypes associated with deletion range from modest to lethal, suggesting that some species encode an additional translation factor that has similar function to EF-P.

View Article and Find Full Text PDF

Protein synthesis is performed by the ribosome and a host of highly conserved elongation factors. Elongation factor P (EF-P) prevents ribosome stalling at difficult-to-translate sequences, particularly polyproline tracts. In bacteria, phenotypes associated with deletion range from modest to lethal, suggesting that some species encode an additional translation factor that has similar function to EF-P.

View Article and Find Full Text PDF

The universally conserved protein elongation factor P (EF-P) facilitates translation at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Despite its wide conservation, it is not essential in most bacteria and its physiological role remains unclear. Here, we show that EF-P affects the process of sporulation initiation in the bacterium Bacillus subtilis.

View Article and Find Full Text PDF