Publications by authors named "Cassidy Noonan"

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by clinical symptoms of memory and cognitive deficiencies. Postmortem evaluation of AD brain tissue shows proteinopathy that closely associate with the progression of this dementing disorder, including the accumulation of extracellular beta amyloid (Aβ) and intracellular hyperphosphorylated tau (pTau) with neurofibrillary tangles (NFTs). Current therapies targeting Aβ have limited clinical efficacy and life-threatening side effects and highlight the need for alternative treatments targeting pTau and other pathophysiologic mechanisms driving AD pathogenesis.

View Article and Find Full Text PDF

There is a paucity of information regarding efficacious pharmacological neuroprotective strategies to attenuate or reduce brain injury in neonates. Lipopolysaccharide (LPS) disrupts blood-brain barrier (BBB) function in adult rodents and increases inflammation in adults and neonates. Human blood-derived Inter-alpha Inhibitor Proteins (IAIPs) are neuroprotective, improve neonatal survival after LPS, and attenuate LPS-induced disruption of the BBB in adult male mice.

View Article and Find Full Text PDF
Article Synopsis
  • Insulin moves from the blood to the brain through a special barrier called the blood-brain barrier (BBB), and this process can be affected by different factors like insulin levels and fats in the body.
  • In a study with healthy mice, scientists looked at how changing insulin levels in the brain affected its transport across the BBB.
  • They discovered that more insulin in the brain actually lowered how much insulin could get through the BBB, indicating that the brain controls how insulin is taken up, and this may relate to issues seen in Alzheimer's disease.
View Article and Find Full Text PDF

Accumulating evidence suggests there is an alternative insulin transporter besides the insulin receptor at the blood-brain barrier (BBB), responsible for shuttling insulin from the circulation into the brain. In this review, we summarize key features of the BBB and what makes it unique compared to other capillary beds; summarize what we know about insulin BBB transport; provide an extensive list of diseases, physiological states, and serum factors tested in modifying insulin BBB transport; and lastly, highlight potential alternative transport systems that may be involved in or have already been tested in mediating insulin BBB transport. Identifying the transport system for insulin at the BBB would aide in controlling central nervous system (CNS) insulin levels in multiple diseases and conditions including Alzheimer's disease (AD) and obesity, where availability of insulin to the CNS is limited.

View Article and Find Full Text PDF

Exercise has multiple beneficial effects including improving peripheral insulin sensitivity, improving central function such as memory, and restoring a dysregulated blood-brain barrier (BBB). Central nervous system (CNS) insulin resistance is a common feature of cognitive impairment, including Alzheimer's disease. Delivery of insulin to the brain can improve memory.

View Article and Find Full Text PDF