Age-related macular degeneration (AMD), a leading cause of vision loss, primarily arises from the degeneration of retinal pigment epithelium (RPE) and photoreceptors. Current therapeutic options for dry AMD are limited. Encouragingly, cultured RPE cells on parylene-based biomimetic Bruch's membrane demonstrate characteristics akin to the native RPE layer.
View Article and Find Full Text PDFPurpose: To report long-term results from a phase 1/2a clinical trial assessment of a scaffold-based human embryonic stem cell-derived retinal pigmented epithelium (RPE) implant in patients with advanced geographic atrophy (GA).
Design: A single-arm, open-label phase 1/2a clinical trial approved by the United States Food and Drug Administration.
Participants: Patients were 69-85 years of age at the time of enrollment and were legally blind in the treated eye (best-corrected visual acuity [BCVA], ≤ 20/200) as a result of GA involving the fovea.
Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw.
View Article and Find Full Text PDFTau inclusions are a shared feature of many neurodegenerative diseases, among them frontotemporal dementia caused by tau mutations. Treatment approaches for these conditions include targeting posttranslational modifications of tau proteins, maintaining a steady-state amount of tau, and preventing its tendency to aggregate. We discovered a new regulatory pathway for tau degradation that operates through the farnesylated protein, Rhes, a GTPase in the Ras family.
View Article and Find Full Text PDFSoft tissue defects are relatively common, yet currently used reconstructive treatments have varying success rates, and serious potential complications such as unpredictable volume loss and reabsorption. Human adipose-derived stem cells (ASCs), isolated from liposuction aspirate have great potential for use in soft tissue regeneration, especially when combined with a supportive scaffold. To design scaffolds that promote differentiation of these cells down an adipogenic lineage, we characterized changes in the surrounding extracellular environment during adipogenic differentiation.
View Article and Find Full Text PDFNeural stem cells have been adopted to model a wide range of neuropsychiatric conditions in vitro. However, how well such models correspond to in vivo brain has not been evaluated in an unbiased, comprehensive manner. We used transcriptomic analyses to compare in vitro systems to developing human fetal brain and observed strong conservation of in vivo gene expression and network architecture in differentiating primary human neural progenitor cells (phNPCs).
View Article and Find Full Text PDFControlling the differentiation of human pluripotent stem cells is the goal of many laboratories, both to study normal human development and to generate cells for transplantation. One important cell type under investigation is the retinal pigmented epithelium (RPE). Age-related macular degeneration (AMD), the leading cause of blindness in the Western world, is caused by dysfunction and death of the RPE.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (iPSCs) have great promise for cellular therapy, but it is unclear if they have the same potential as human embryonic stem cells (hESCs) to differentiate into specialized cell types. Ocular cells such as the retinal pigmented epithelium (RPE) are of particular interest because they could be used to treat degenerative eye diseases, including age-related macular degeneration and retinitis pigmentosa. We show here that iPSCs generated using Oct4, Sox2, Nanog, and Lin28 can spontaneously differentiate into RPE cells, which can then be isolated and cultured to form highly differentiated RPE monolayers.
View Article and Find Full Text PDF