Mine lands contaminted with heavy metals pose environmental risks, and thus reclamation is paramount for improving soil, plant, animal, and ecosystem health. A metal-contaminated alluvial mine tailing, devoid of vegetation, received 224 Mg ha of both lime and biosolids in 1998, and long-term reclamation success was quantified in 2019 with respect to soils, plants, and linkages to animals. Reclamation success was quantified using the Soil Management Assessment Framework (SMAF), in conjunction with bioavailable (0.
View Article and Find Full Text PDFLegacy phosphorus (P) is a reservoir of sparingly available P, and its recovery could enhance sustainable use of nonrenewable mineral fertilizers. Domestication has affected P acquisition, but it is unknown if subsequent breeding efforts, like the Green Revolution (GR), had a similar effect. We examined how domestication and breeding events altered P acquisition by growing wild, traditional (pre-GR), and modern (post-GR) tomato in soil with legacy P but low bioavailable P.
View Article and Find Full Text PDFPhosphorous (P) is widely used in agriculture; yet, P fertilizers are a nonrenewable resource. Thus, mechanisms to improve soil P bioavailability need to be found. Legumes are efficient in P acquisition and, therefore, could be used to develop new technologies to improve soil P bioavailability.
View Article and Find Full Text PDF