Publications by authors named "Cassetti M"

In February 2023, a meeting about correlates of protection (CoPs) against COVID-19 was organized by the International Alliance for Biological Standardization, the European Plotkin Institute for Vaccinology, and Vaccinopolis. The meeting aimed at reviewing the evidence, drawing conclusions, and identifying knowledge gaps. Collection of evidence is not straightforward.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic demonstrated how rapidly vaccines and monoclonal antibodies (mAbs) could be deployed when the field is prepared to respond to a novel virus, serving as proof of concept that the prototype pathogen approach is feasible. This success was built upon decades of foundational research, including the characterization of protective antigens and coronavirus immunity leading to the development and validation of a generalizable vaccine approach for multiple coronaviruses. For other virus families of pandemic concern, the field is less prepared.

View Article and Find Full Text PDF
Article Synopsis
  • - The emergence of SARS-CoV-1 20 years ago led to multiple global infectious disease outbreaks, highlighting the need for effective preparedness against future pandemics like SARS-CoV-2.
  • - In December 2021, the NIAID released a pandemic preparedness plan that focuses on research around key pathogens and technologies to foster rapid response to health crises.
  • - Adopting a prototype pathogen strategy can enhance research efforts and help develop medical countermeasures for new or reemerging infectious diseases, ultimately safeguarding public health.
View Article and Find Full Text PDF
Article Synopsis
  • The rise of SARS-CoV-2 sparked the development of numerous serology assays to detect antibodies, leading to a trans-government collaboration in April 2020 aimed at evaluating these assays for FDA regulatory purposes.
  • Three evaluation panels were formed, consisting of 110 samples each, to test for anti-SARS-CoV-2 antibodies using enzyme-linked immunosorbent assays (ELISA), ensuring agreement on seropositivity from reliable labs.
  • By January 2021, the results of 91 tests showed varying sensitivity and specificity rates, with about one-third of the assays receiving FDA authorization for emergency use, establishing a framework for future assessments during outbreaks.
View Article and Find Full Text PDF

WHO convened an Advisory Group (AG) to consider the feasibility, potential value, and limitations of establishing a closely-monitored challenge model of experimental severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) in healthy adult volunteers. The AG included experts in design, establishment, and performance of challenges. This report summarizes issues that render a COVID-19 model daunting to establish (the potential of SARS-CoV-2 to cause severe/fatal illness, its high transmissibility, and lack of a "rescue treatment" to prevent progression from mild/moderate to severe clinical illness) and it proffers prudent strategies for stepwise model development, challenge virus selection, guidelines for manufacturing challenge doses, and ways to contain SARS-CoV-2 and prevent transmission to household/community contacts.

View Article and Find Full Text PDF

The development, validation, and appropriate application of serological assays to detect antibodies to SARS-CoV-2 are essential to determining seroprevalence of this virus in the United States and globally and in guiding government leadership and the private sector on back-to-work policies. An interagency working group of the US Department of Health and Human Services convened a virtual workshop to identify knowledge gaps and key outstanding scientific issues and to develop strategies to fill them. Key outcomes of the workshop included recommendations for (1) advancing serology assays as a tool to better understand SARS-CoV-2 infection and (2) conducting crucial serology field studies to advance an understanding of immunity to SARS-CoV-2, leading to protection and duration of protection, including the correlation between serological test results and risk of reinfection.

View Article and Find Full Text PDF

Emerging and re-emerging infectious diseases are an expanding global threat to public health, security, and economies. Increasing populations, urbanization, deforestation, climate change, anti-vaccination movements, war, and international travel are some of the contributing factors to this trend. The recent Ebola, MERS-CoV, and Zika outbreaks demonstrated we are insufficiently prepared to respond with proven safe and effective countermeasures (i.

View Article and Find Full Text PDF

Since its peak in early 2016, the incidence of Zika virus (ZIKV) cases has declined to such low levels that Phase 3 field efficacy trials may be infeasible. While great progress was made to rapidly advance several vaccine candidates into Phase 1 and 2 clinical trials, in the absence of sustained viral transmission it may be difficult to evaluate the effectiveness of ZIKV vaccine candidates by conducting traditional clinical disease endpoint efficacy studies. However, ZIKV is still circulating at low levels in some areas and is likely to re-emerge in naïve populations or in sites of prior epidemics once population immunity wanes.

View Article and Find Full Text PDF
Article Synopsis
  • * An expert consultation followed by the Delphi method was used to discuss and assess these endpoints, revealing that over 80% of experts believe standardized endpoints are necessary, despite challenges in defining moderate severity.
  • * The research indicates a preference for aligning endpoints with WHO guidelines and suggests that careful validation using large data sets could enhance their effectiveness in dengue intervention research.
View Article and Find Full Text PDF

Dengue virus infections are a major cause of febrile illness that significantly affects individual and societal productivity and drives up health care costs principally in the developing world. Two dengue vaccine candidates are in advanced clinical efficacy trials in Latin America and Asia, and another has been licensed in more than fifteen countries but its uptake has been limited. Despite these advances, standardized metrics for comparability of protective efficacy between dengue vaccines remain poorly defined.

View Article and Find Full Text PDF

Dengue is a major public health problem worldwide. Although several drug candidates have been evaluated in randomized controlled trials, none has been effective and at present, early recognition of severe dengue and timely supportive care are used to reduce mortality. While the first dengue vaccine was recently licensed, and several other candidates are in late stage clinical trials, future decisions regarding widespread deployment of vaccines and/or therapeutics will require evidence of product safety, efficacy and effectiveness.

View Article and Find Full Text PDF

Dengue is the most common arboviral disease of humans. There is an unmet need for a therapeutic intervention that reduces the duration and severity of dengue symptoms and diminishes the likelihood of severe complications. To this end, there are active discovery efforts in industry and academia to develop interventions, with a focus on small molecule inhibitors of dengue virus replication that are suitable for therapy or chemoprophylaxis.

View Article and Find Full Text PDF

There is an unmet need for a dengue vaccine to further prevent the spread of this disease and contain the growing pandemic. To this end several vaccine companies and academic groups are actively pursuing the development of a tetravalent vaccine to prevent dengue. In the last few years progress has been made in this area, including the first results of a vaccine efficacy trial and improved understanding of the immune responses to the infection.

View Article and Find Full Text PDF

Dengue is a systemic arthropod-borne viral disease of major global public health importance. At least 2.5 billion people who live in areas of the world where dengue occurs are at risk of developing dengue fever (DF) and its severe complications, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS).

View Article and Find Full Text PDF

On September 16, 2009, the National Institute of Allergy and Infectious Diseases (NIAID), part of the U.S. National Institutes of Health, convened a workshop to discuss current knowledge of T- and B-cell immune epitopes for members of the Flavivirus genus (family Flaviviridae), and how this information could be used to increase our basic understanding of host-pathogen interactions and/or advance the development of new or improved vaccines and diagnostics for these pathogens.

View Article and Find Full Text PDF

Dengue is a mosquito-borne viral disease of humans that has re-emerged in many parts of the world and has become an important international public health threat. Dengue incidence and geographical spread has dramatically increased in the last few decades and is now affecting most tropical and sub-tropical regions of the world. Despite extensive research efforts for several decades, no vaccines or therapeutics are currently available to prevent and treat dengue infections.

View Article and Find Full Text PDF

An effective vaccine for treating human papillomavirus (HPV)-associated malignancies such as cervical cancer should elicit strong T cell-mediated immunity (CMI) against the E6 and/or E7 proteins necessary for the malignant state. We have developed Venezuelan equine encephalitis (VEE) virus replicon particle (VRP) vaccines encoding the HPV16 E6 and E7 genes and tested their immunogenicity and antitumor efficacy. The E6 and E7 genes were fused to create one open reading frame and mutated at four or at five amino acid positions to inactivate their oncogenic potential.

View Article and Find Full Text PDF

With the increasing generation of new cancer vaccine strategies, there is also an increasing demand for preclinical models that can carefully predict the efficacy of these vaccines in humans. However, the only tumor models available to study vaccines against human papillomavirus (HPV) 16 have been developed in C57BL/6 mice. To test the HLA-restricted capabilities of vaccination strategies, it is important to establish a tumor model in HLA-A*0201 transgenic mice.

View Article and Find Full Text PDF

The etiological role of human papillomaviruses (HPV) in cervical and other cancers suggests that therapeutic vaccines directed against requisite viral antigens may eradicate tumors or their precursors. A Venezuelan equine encephalitis (VEE) alphavirus vector delivering the HPV16 E7 RNA was evaluated for antitumor efficacy using a murine E7+ tumor model. Vaccination with VEE replicon particles expressing E7 (E7-VRP) induced class I-restricted CD8+ T-cell responses as determined by IFN-gamma enzyme-linked immunospot (ELISPOT), tetramer, and cytotoxicity assays.

View Article and Find Full Text PDF

We test the hypothesis that the translation machinery in cells infected by influenza A virus efficiently translates only mRNAs that possess the influenza viral 5' untranslated region (5'-UTR) by introducing mRNAs directly into the cytoplasm of infected cells. This strategy avoids effects due to the inhibition of the nuclear export of cellular mRNAs mediated by the viral NS1 protein. In one approach, we transfect in vitro synthesized mRNAs into infected cells and demonstrate that these mRNAs are efficiently translated whether or not they possess the influenza viral 5'-UTR.

View Article and Find Full Text PDF