The terrestrial subsurface harbors unique microbial communities that play important biogeochemical roles and allow for studying a yet unknown fraction of the Earth's biodiversity. The Saint-Leonard cave in Montreal City (Canada) is of glaciotectonic origin. Its speleogenesis traces back to the withdrawal of the Laurentide Ice Sheet 13,000 years ago, during which the moving glacier dislocated the sedimentary rock layers.
View Article and Find Full Text PDFMost studies of groundwater ecosystems target planktonic microbes, which are easily obtained via water samples. In contrast, little is known about the diversity and function of microbes adhering to rock surfaces, particularly to consolidated rocks. To investigate microbial attachment to rock surfaces, we incubated rock chips from fractured aquifers in limestone-mudstone alternations in bioreactors fed with groundwater from two wells representing oxic and anoxic conditions.
View Article and Find Full Text PDFMicrobial communities are key players in groundwater ecosystems. In this dark environment, heterotrophic microbes rely on biomass produced by the activity of lithoautotrophs or on the degradation of organic matter seeping from the surface. Most studies on bacterial diversity in groundwater habitats are based on 16S gene sequencing and full genome reconstructions showing potential metabolic pathways used in these habitats.
View Article and Find Full Text PDFThe deep terrestrial subsurface, hundreds of meters to kilometers below the surface, is characterized by oligotrophic conditions, dark and often anoxic settings, with fluctuating pH, salinity, and water availability. Despite this, microbial populations are detected and active, contributing to biogeochemical cycles over geological time. Because it is extremely difficult to access the deep biosphere, little is known about the identity and metabolisms of these communities, although they likely possess unknown pathways and might interfere with deep waste deposits.
View Article and Find Full Text PDFAquifer systems are composed of water flowing from surface recharge areas, to the subsurface and back to the surface in discharge regions. Groundwater habitats harbor a large microbial biomass and diversity, potentially contributing to surface aquatic ecosystems. Although this contribution has been widely studied in marine environments, very little is known about the connection between underground and surface microbial communities in freshwater settings.
View Article and Find Full Text PDFEvents of groundwater recharge are associated with changes in the composition of aquifer microbial communities but also abiotic conditions. Modification in the structure of the community can be the result of different environmental condition favoring or hindering certain taxa, or due to the introduction of surface-derived taxa. Yet, in both cases, the local hydrogeochemical settings of the aquifer is likely to affect the amount of variation observed.
View Article and Find Full Text PDFGroundwater recharge and discharge rates and zones are important hydrogeological characteristics of aquifer systems, yet their impact on the formation of both subterranean and surface microbiomes remains largely unknown. In this study, we used 16S rRNA gene sequencing to characterize and compare the microbial community of seven different aquifers, including the recharge and discharge areas of each system. The connectivity between subsurface and surface microbiomes was evaluated at each site, and the temporal succession of groundwater microbial communities was further assessed at one of the sites.
View Article and Find Full Text PDFMud volcanoes transport deep fluidized sediment and their microbial communities and thus provide a window into the deep biosphere. However, mud volcanoes are commonly sampled at the surface and not probed at greater depths, with the consequence that their internal geochemistry and microbiology remain hidden from view. Urania Basin, a hypersaline seafloor basin in the Mediterranean, harbors a mud volcano that erupts fluidized mud into the brine.
View Article and Find Full Text PDFAquifers are inhabited by microorganisms from the three major domains of life: Archaea, Eukaryotes and Bacteria. Although interest in the processes that govern the assembly of these microbial communities is growing, their study is almost systematically limited to one of the three domains of life. Archaea, Bacteria and Eukaryotes are however interconnected and essential to understand the functioning of their living ecosystems.
View Article and Find Full Text PDFIn freshwater ecosystems, dynamic hydraulic events (floods or dam maintenance) lead to sediment resuspension and mixing with waters of different composition. Microbial communities living in the sediments play a major role in these leaching events, contributing to organic matter degradation and the release of trace elements. However, the dynamics of community diversity are seldom studied in the context of ecological studies.
View Article and Find Full Text PDFMicrobial communities play an important role in shallow terrestrial subsurface ecosystems. Most studies of this habitat have focused on planktonic communities that are found in the groundwater of aquifer systems and only target specific microbial groups. Therefore, a systematic understanding of the processes that govern the assembly of endolithic and sessile communities is still missing.
View Article and Find Full Text PDFTerrestrial subsurface microbial communities are not restricted to the fluid-filled void system commonly targeted during groundwater sampling but are able to inhabit and dwell in rocks. However, compared to the exploration of the deep biosphere, endolithic niches in shallow sedimentary bedrock have received little interest so far. Despite the potential contribution of rock matrix dwellers to matter cycling and groundwater resource quality, their identity and diversity patterns are largely unknown.
View Article and Find Full Text PDFMarine sediments host an unexpectedly large microbial biosphere, suggesting unique microbial mechanisms for surviving burial and slow metabolic turnover. Although dormancy is generally considered an important survival strategy, its specific role in subsurface sediments remains unclear. We quantified dormant bacterial endospores in 331 marine sediment samples from diverse depositional types and geographical origins.
View Article and Find Full Text PDFGroundwater environments provide habitats for diverse microbial communities, and although Archaea usually represent a minor fraction of communities, they are involved in key biogeochemical cycles. We analysed the archaeal diversity within a mixed carbonate-rock/siliciclastic-rock aquifer system, vertically from surface soils to subsurface groundwater including aquifer and aquitard rocks. Archaeal diversity was also characterized along a monitoring well transect that spanned surface land uses from forest/woodland to grassland and cropland.
View Article and Find Full Text PDFAlong a long-term ecosystem development gradient, soil nutrient contents and mineralogical properties change, therefore probably altering soil microbial communities. However, knowledge about the dynamics of soil microbial communities during long-term ecosystem development including progressive and retrogressive stages is limited, especially in mineral soils. Therefore, microbial abundances (quantitative PCR) and community composition (pyrosequencing) as well as their controlling soil properties were investigated in soil depth profiles along the 120,000 years old Franz Josef chronosequence (New Zealand).
View Article and Find Full Text PDFGenomic bins belonging to multiple archaeal lineages were recovered from distinct redox regimes in sediments of the White Oak River estuary. The reconstructed archaeal genomes were identified as belonging to the rice cluster subgroups III and V (RC-III, RC-V), the Marine Benthic Group D (MBG-D), and a newly described archaeal class, the Theionarchaea. The metabolic capabilities of these uncultured archaea were inferred and indicated a common capability for extracellular protein degradation, supplemented by other pathways.
View Article and Find Full Text PDF[This corrects the article on p. 1638 in vol. 7, PMID: 27807431.
View Article and Find Full Text PDFSavannas cover at least 13% of the global terrestrial surface and are often nutrient limited, especially by nitrogen. To gain a better understanding of their microbial diversity and the microbial nitrogen cycling in savanna soils, soil samples were collected along a granitic and a basaltic catena in Kruger National Park (South Africa) to characterize their bacterial and archaeal composition and the genetic potential for nitrification. Although the basaltic soils were on average 5 times more nutrient rich than the granitic soils, all investigated savanna soil samples showed typically low nutrient availabilities, i.
View Article and Find Full Text PDFUnlabelled: The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area.
View Article and Find Full Text PDFMarine and estuary sediments contain a variety of uncultured archaea whose metabolic and ecological roles are unknown. De novo assembly and binning of high-throughput metagenomic sequences from the sulfate-methane transition zone in estuary sediments resulted in the reconstruction of three partial to near-complete (2.4-3.
View Article and Find Full Text PDFInvestigations of the biogeochemical roles of benthic Archaea in marine sediments are hampered by the scarcity of cultured representatives. In order to determine their metabolic capacity, we reconstructed the genomic content of four widespread uncultured benthic Archaea recovered from estuary sediments at 48% to 95% completeness. Four genomic bins were found to belong to different subgroups of the former Miscellaneous Crenarcheota Group (MCG) now called Bathyarchaeota: MCG-6, MCG-1, MCG-7/17 and MCG-15.
View Article and Find Full Text PDFEnviron Microbiol Rep
February 2016
We investigated the microbial community compositions in two sediment samples from the acidic (pH ∼3) and hypersaline (>4.5% NaCl) surface waters, which are widespread in Western Australia. In West Dalyup River, large amounts of NaCl, Fe(II) and sulfate are brought by the groundwater into the surface run-off.
View Article and Find Full Text PDFBackground: Estuaries are among the most productive habitats on the planet. Bacteria in estuary sediments control the turnover of organic carbon and the cycling of nitrogen and sulfur. These communities are complex and primarily made up of uncultured lineages, thus little is known about how ecological and metabolic processes are partitioned in sediments.
View Article and Find Full Text PDF