The encapsulation of enzymes within porous materials has shown great promise, not only in protecting the enzymes from denaturation under nonbiological environments, but also, in some cases, in facilitating their enzymatic reaction rates at favorable reaction conditions. While a number of hypotheses have been developed to explain this phenomenon, the detailed structural changes of the enzymes upon encapsulation within the porous material, which are closely related to their activity, remain largely elusive. Herein, the structural change of cytochrome c (Cyt c) upon encapsulation within a hierarchical metal-organic framework, NU-1000, is investigated through a combination of experimental and computational methods, such as electron paramagnetic resonance, solid-state ultraviolet-visible spectroscopy, and all-atom explicit solvent molecular dynamics simulations.
View Article and Find Full Text PDFColloidal crystal engineering with nucleic acid-modified nanoparticles is a powerful way for preparing 3D superlattices, which may be useful in many areas, including catalysis, sensing, and photonics. To date, the building blocks studied have been primarily based upon metals, metal oxides, chalcogenide semiconductors, and proteins. Here, we show that metal-organic framework nanoparticles (MOF NPs) densely functionalized with oligonucleotides can be programmed to crystallize into a diverse set of superlattices with well-defined crystal symmetries and compositions.
View Article and Find Full Text PDFMaterials capable of the safe and efficient capture or degradation of toxic chemicals, including chemical warfare agents (CWAs) and toxic industrial chemicals (TICs), are critically important in the modern age due to continuous threats of these chemicals to human life, both directly and indirectly. Metal-organic frameworks (MOFs), atomically precise hybrid materials that are synthesized via the self-assembly of metal cations or clusters and organic linkers, offer a unique solid adsorbent design platform due to their great synthetic versatility. This review will focus on recent advancements in MOF-based adsorbent design for protection against chemical warfare agents (organophosphorus nerve agents, blistering agents, and their simulants) and toxic industrial chemicals such as HS, NH, SO, CO, NO, and NO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Polyoxometalates (POMs) can benefit from immobilization on solid supports to overcome their difficulty in processability and stability. Among the reported solid supports, metal-organic frameworks (MOFs) offer a crystalline, versatile platform for depositing highly active POMs. The combination of these structures can at times benefit from the combined reactivity of both the POM and MOF, sometimes synergistically, to improve catalysis while balancing desirable properties like porosity, substrate diffusion, or stability.
View Article and Find Full Text PDFProtection of enzymes with synthetic materials is a viable strategy to stabilize, and hence to retain, the reactivity of these highly active biomolecules in non-native environments. Active synthetic supports, coupled to encapsulated enzymes, can enable efficient cascade reactions which are necessary for processes like light-driven CO reduction, providing a promising pathway for alternative energy generation. Herein, a semi-artificial system-containing an immobilized enzyme, formate dehydrogenase, in a light harvesting scaffold-is reported for the conversion of CO to formic acid using white light.
View Article and Find Full Text PDFThe understanding of the catalyst-support interactions has been an important challenge in heterogeneous catalysis since the supports can play a vital role in controlling the properties of the active species and hence their catalytic performance. Herein, a series of isostructural mesoporous metal-organic frameworks (MOFs) based on transition metals, lanthanides, and actinides (Zr, Hf, Ce, Th) were investigated as supports for a vanadium catalyst. The vanadium species was coordinated to the oxo groups of the MOF node in a single-ion fashion, as determined by single-crystal X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, and diffuse reflectance UV-vis spectroscopy.
View Article and Find Full Text PDFThe efficient fixation of excess CO from the atmosphere to yield value-added chemicals remains crucial in response to the increasing levels of carbon emission. Coupling enzymatic reactions with electrochemical regeneration of cofactors is a promising technique for fixing CO , while producing biomass which can be further transformed into biofuels. Herein, a bioelectrocatalytic system was established by depositing crystallites of a mesoporous metal-organic framework (MOF), termed NU-1006, containing formate dehydrogenase, on a fluorine-doped tin oxide glass electrode modified with Cp*Rh(2,2'-bipyridyl-5,5'-dicarboxylic acid)Cl complex.
View Article and Find Full Text PDFUremic toxins often accumulate in patients with compromised kidney function, like those with chronic kidney disease (CKD), leading to major clinical complications including serious illness and death. Sufficient removal of these toxins from the blood increases the efficacy of hemodialysis, as well as the survival rate, in CKD patients. Understanding the interactions between an adsorbent and the uremic toxins is critical for designing effective materials to remove these toxic compounds.
View Article and Find Full Text PDFThe photocatalytically driven partial oxidation of a mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES), was studied using the perylene-based metal-organic framework (MOF) UMCM-313 and compared to the activities of the Zr-based MOFs: PCN-222/MOF-545 and NU-1000. The rates of CEES oxidation positively correlated with the singlet oxygen quantum yield of the MOF linkers, porphyrin (PCN-222/MOF-545) < pyrene (NU-1000) < perylene (UMCM-313). Subsequently, thin films of UMCM-313 and NU-1000 were solvothermally grown on a conductive glass substrate to minimize catalyst loading and prevent light scattering by suspended MOF particles.
View Article and Find Full Text PDFWe report the syntheses, structures, and oxidation catalytic activities of a single-atom-based vanadium oxide incorporated in two highly crystalline MOFs, Hf-MOF-808 and Zr-NU-1000. These vanadium catalysts were introduced by a postsynthetic metalation, and the resulting materials (Hf-MOF-808-V and Zr-NU-1000-V) were thoroughly characterized through a combination of analytic and spectroscopic techniques including single-crystal X-ray crystallography. Their catalytic properties were investigated using the oxidation of 4-methoxybenzyl alcohol under an oxygen atmosphere as a model reaction.
View Article and Find Full Text PDFAcid-catalyzed skeletal C-C bond isomerizations are important benchmark reactions for the petrochemical industries. Among those, o-xylene isomerization/disproportionation is a probe reaction for strong Brønsted acid catalysis, and it is also sensitive to the local acid site density and pore topology. Here, we report on the use of phosphotungstic acid (PTA) encapsulated within NU-1000, a Zr-based metal-organic framework (MOF), as a catalyst for o-xylene isomerization at 523 K.
View Article and Find Full Text PDFNickel(IV) bis(dicarbollide) is incorporated in a zirconium-based metal-organic framework (MOF), NU-1000, to create an electrically conductive MOF with mesoporosity. All the nickel bis(dicarbollide) units are located as guest molecules in the microporous channels of NU-1000, which permits the further incorporation of other active species in the remaining mesopores. For demonstration, manganese oxide is installed on the nodes of the electrically conductive MOF.
View Article and Find Full Text PDFNU-1000, a mesoporous metal-organic framework (MOF) featuring hexazirconium oxide nodes and 3 nm wide channels, was infiltrated with a reactive dicobalt complex to install dicobalt active sites onto the MOF nodes. The anchoring of the dicobalt complex onto NU-1000 occurred with a nearly ideal stoichiometry of one bimetallic complex per node and with the cobalt evenly distributed throughout the MOF particle. To access thermally robust multimetallic sites on an all-inorganic support, the modified NU-1000 materials containing either the dicobalt complex, or an analogous cobalt-aluminum species, were nanocast with silica.
View Article and Find Full Text PDFHere we describe the synthesis of two Zr-based benzothiadiazole- and benzoselenadiazole-containing metal-organic frameworks (MOFs) for the selective photocatalytic oxidation of the mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES). The photophysical properties of the linkers and MOFs are characterized by steady-state absorption and emission, time-resolved emission, and ultrafast transient absorption spectroscopy. The benzoselenadiazole-containing MOF shows superior catalytic activity compared to that containing benzothiadiazole with a half-life of 3.
View Article and Find Full Text PDFA fullerene-based photosensitizer is incorporated postsynthetically into a Zr -based MOF, NU-1000, for enhanced singlet oxygen production. The structural organic linkers in the MOF platform also act as photosensitizers which contribute to the overall generation of singlet oxygen from the material under UV irradiation. The singlet oxygen generated by the MOF/fullerene material is shown to oxidize sulfur mustard selectively to the less toxic bis(2-chloroethyl)sulfoxide with a half-life of only 11 min.
View Article and Find Full Text PDFA pyrene-based metal-organic framework (MOF) NU-1000 was used as a heterogeneous photocatalyst for the degradation of a sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). Using irradiation from a commercially available and inexpensive ultraviolet (UV) light-emitting diode (LED), singlet oxygen (O) is generated by NU-1000 and selectively oxidizes CEES to the nontoxic product 2-chloroethyl ethyl sulfoxide (CEESO). More importantly, this method was tested on the warfare agent sulfur mustard (HD) for the first time using O and a MOF catalyst, and this method proved to be effective in oxidizing sulfur mustard to nontoxic products without forming the toxic sulfone by-product.
View Article and Find Full Text PDF