Publications by authors named "Cassandra Sampaio-Baptista"

Oligodendrocytes continue to differentiate from their precursor cells even in adulthood, a process that can be modulated by neuronal activity and experience. Previous work has indicated that conditional ablation of oligodendrogenesis in adult mice leads to learning and memory deficits in a range of behavioral tasks. The current study replicated and re-evaluated evidence for a role of oligodendrogenesis in motor learning, using a complex running wheel task.

View Article and Find Full Text PDF

Previous work has shown that motor skill learning stimulates and requires generation of myelinating oligodendrocytes (OLs) from their precursor cells (OLPs) in the brains of adult mice. In the present study we ask whether OL production is also required for non-motor learning and cognition, using T-maze and radial-arm-maze tasks that tax spatial working memory. We find that maze training stimulates OLP proliferation and OL production in the medial prefrontal cortex (mPFC), anterior corpus callosum (genu), dorsal thalamus and hippocampal formation of adult male mice; myelin sheath formation is also stimulated in the genu.

View Article and Find Full Text PDF
Article Synopsis
  • * It introduces StandardRat, a standardized fMRI acquisition protocol for rats that has been tested across 20 research centers to enhance data integration.
  • * The standardized protocol and processing pipeline improve the reliability of detecting functional connectivity patterns and are made publicly available to foster collaboration in the neuroimaging field.
View Article and Find Full Text PDF

Real-time functional MRI neurofeedback allows individuals to self-modulate their ongoing brain activity. This may be a useful tool in clinical disorders that are associated with altered brain activity patterns. Motor impairment after stroke has previously been associated with decreased laterality of motor cortex activity.

View Article and Find Full Text PDF

Several studies have established specific relationships between White Matter (WM) and behaviour. However, these studies have typically focussed on fractional anisotropy (FA), a neuroimaging metric that is sensitive to multiple tissue properties, making it difficult to identify what biological aspects of WM may drive such relationships. Here, we carry out a pre-registered assessment of WM-behaviour relationships in 50 healthy individuals across multiple behavioural and anatomical domains, and complementing FA with myelin-sensitive quantitative MR modalities (MT, R1, R2∗).

View Article and Find Full Text PDF

White matter (WM) plasticity supports skill learning and memory. Up- and downregulation of brain activity in animal models lead to WM alterations. But can bidirectional brain-activity manipulation change WM structure in the adult human brain? We employ fMRI neurofeedback to endogenously and directionally modulate activity in the sensorimotor cortices.

View Article and Find Full Text PDF

Neuroscience has seen substantial development in non-invasive methods available for investigating the living human brain. However, these tools are limited to coarse macroscopic measures of neural activity that aggregate the diverse responses of thousands of cells. To access neural activity at the cellular and circuit level, researchers instead rely on invasive recordings in animals.

View Article and Find Full Text PDF

White matter (WM) plasticity during adulthood is a recently described phenomenon by which experience can shape brain structure. It has been observed in humans using diffusion tensor imaging (DTI) and myelination has been suggested as a possible mechanism. Here, we set out to identify molecular and cellular changes associated with WM plasticity measured by DTI.

View Article and Find Full Text PDF

The white matter is a complex network of brain fibers connecting different information processing regions in the brain. In recent years, the investigation of white matter in humans and in animal models has greatly benefitted from the introduction of in vivo noninvasive magnetic resonance imaging (MRI) techniques. MRI allows for multiple in vivo time-point whole-brain acquisition in the same subject, thus it can be used longitudinally to monitor white matter brain change, intervention effects, as well as disease progression.

View Article and Find Full Text PDF

The production of new myelin has been highlighted as an underappreciated mechanism of brain plasticity, but whether plastic decreases in myelin also happen in the adult brain has been largely unexplored. Recently, Sinclair et al. (Sinclair JS, Fischl MJ, Alexandrova O, Heß M, Grothe B, Leibold C, and Kopp-Scheinpflug C.

View Article and Find Full Text PDF

Working memory capacity is pivotal for a broad specter of cognitive tasks and develops throughout childhood. This must in part rely on development of neural connections and white matter microstructure maturation, but there is scarce knowledge of specific relations between this and different aspects of working memory. Diffusion tensor imaging (DTI) enables us to study development of brain white matter microstructure.

View Article and Find Full Text PDF

The development of advanced noninvasive techniques to image the human brain has enabled the demonstration of structural plasticity during adulthood in response to motor learning. Understanding the basic mechanisms of structural plasticity in the context of motor learning is essential to improve motor rehabilitation in stroke patients. Here, we review and discuss the emerging evidence for motor-learning-related structural plasticity and the implications for stroke rehabilitation.

View Article and Find Full Text PDF

The study of brain plasticity has tended to focus on the synapse, where well-described activity-dependent mechanisms are known to play a key role in learning and memory. However, it is becoming increasingly clear that plasticity occurs beyond the synapse. This review focuses on the emerging concept of white matter plasticity.

View Article and Find Full Text PDF

Myelin is important for the normal development and healthy function of the nervous system. Recent developments in MRI acquisition and tissue modeling aim to provide a better characterization and more specific markers for myelin. This allows for specific monitoring of myelination longitudinally and noninvasively in the healthy brain as well as assessment of treatment and intervention efficacy.

View Article and Find Full Text PDF

Myelin sheaths in the vertebrate nervous system enable faster impulse propagation, while myelinating glia provide vital support to axons. Once considered a static insulator, converging evidence now suggests that myelin in the central nervous system can be dynamically regulated by neuronal activity and continues to participate in nervous system plasticity beyond development. While the link between experience and myelination gains increased recognition, it is still unclear what role such adaptive myelination plays in facilitating and shaping behaviour.

View Article and Find Full Text PDF

Neurofeedback training involves presenting an individual with a representation of their brain activity and instructing them to alter the activity using the feedback. One potential application of neurofeedback is for patients to alter neural activity to improve function. For example, there is evidence that greater laterality of movement-related activity is associated with better motor outcomes after stroke; so using neurofeedback to increase laterality may provide a novel route for improving outcomes.

View Article and Find Full Text PDF

The purpose of the present study was to detail the childhood developmental course of different white matter (WM) characteristics. In a longitudinal diffusion tensor imaging (DTI) study of 159 healthy children between 4 and 11years scanned twice, we used tract-based spatial statistics as well as delineation of 15 major WM tracts to characterize the regional pattern of change in fractional anisotropy (FA), mean (MD), radial (RD) and axial diffusivity (AD). We tested whether there were decelerations of change with increasing age globally and tract-wise, and also illustrated change along medial-to-lateral, posterior-to-anterior and inferior-to-superior gradients.

View Article and Find Full Text PDF

Learning novel motor skills alters local inhibitory circuits within primary motor cortex (M1) (Floyer-Lea et al., 2006) and changes long-range functional connectivity (Albert et al., 2009).

View Article and Find Full Text PDF

Abstract Spike timing-dependent plasticity (STDP) is an attractive candidate to mediate the synaptic changes that support circuit plasticity in sensory cortices during development. STDP is prevalent at excitatory synapses, but it is not known whether the underlying mechanisms are universal, or whether distinct mechanisms underpin STDP at different synapses. Here, we set out to compare and contrast STDP at vertical layer 4 and horizontal layer 2/3 inputs onto postsynaptic layer 2/3 neurons in the mouse barrel cortex.

View Article and Find Full Text PDF

The ability to predict learning performance from brain imaging data has implications for selecting individuals for training or rehabilitation interventions. Here, we used structural MRI to test whether baseline variations in gray matter (GM) volume correlated with subsequent performance after a long-term training of a complex whole-body task. 44 naïve participants were scanned before undertaking daily juggling practice for 6weeks, following either a high intensity or a low intensity training regime.

View Article and Find Full Text PDF

Anatomically plausible networks of functionally inter-connected regions have been reliably demonstrated at rest, although the neurochemical basis of these 'resting state networks' is not well understood. In this study, we combined magnetic resonance spectroscopy (MRS) and resting state fMRI and demonstrated an inverse relationship between levels of the inhibitory neurotransmitter GABA within the primary motor cortex (M1) and the strength of functional connectivity across the resting motor network. This relationship was both neurochemically and anatomically specific.

View Article and Find Full Text PDF

Learning a novel motor skill is associated with well characterized structural and functional plasticity in the rodent motor cortex. Furthermore, neuroimaging studies of visuomotor learning in humans have suggested that structural plasticity can occur in white matter (WM), but the biological basis for such changes is unclear. We assessed the influence of motor skill learning on WM structure within sensorimotor cortex using both diffusion MRI fractional anisotropy (FA) and quantitative immunohistochemistry.

View Article and Find Full Text PDF

How rapidly does learning shape our brains? A new study in this issue of Neuron by Sagi et al. (2012) that uses diffusion magnetic resonance imaging in both humans and rats suggests that just 2 hr of spatial learning is sufficient to change brain structure.

View Article and Find Full Text PDF