Publications by authors named "Cassandra L Schlamp"

Purpose: Retinal ganglion cell (RGC) apoptosis and axon regeneration are the principal obstacles challenging the development of successful whole eye transplantation (WET). The purpose of this study was to create a neuroprotective cocktail that targets early events in the RGC intrinsic apoptotic program to stabilize RGCs in a potential donor eye.

Methods: University of Wisconsin (UW) solution was augmented with supplements known to protect RGCs.

View Article and Find Full Text PDF

Background: Pro-apoptotic BAX is a central mediator of retinal ganglion cell (RGC) death after optic nerve damage. BAX activation occurs in two stages including translocation of latent BAX to the mitochondrial outer membrane (MOM) and then permeabilization of the MOM to facilitate the release of apoptotic signaling molecules. As a critical component of RGC death, BAX is an attractive target for neuroprotective therapies and an understanding of the kinetics of BAX activation and the mechanisms controlling the two stages of this process in RGCs is potentially valuable in informing the development of a neuroprotective strategy.

View Article and Find Full Text PDF

Background Pro-apoptotic BAX is a central mediator of retinal ganglion cell (RGC) death after optic nerve damage. BAX activation occurs in two stages including translocation of latent BAX to the mitochondrial outer membrane (MOM) and then permeabilization of the MOM to facilitate the release of apoptotic signaling molecules. As a critical component of RGC death, BAX is an attractive target for neuroprotective therapies and an understanding of the kinetics of BAX activation and the mechanisms controlling the two stages of this process in RGCs is potentially valuable in informing the development of a neuroprotective strategy.

View Article and Find Full Text PDF

Purpose: Inhibition or targeted deletion of histone deacetylase 3 (HDAC3) is neuroprotective in a variety neurodegenerative conditions, including retinal ganglion cells (RGCs) after acute optic nerve damage. Consistent with this, induced HDAC3 expression in cultured cells shows selective toxicity to neurons. Despite an established role for HDAC3 in neuronal pathology, little is known regarding the mechanism of this pathology.

View Article and Find Full Text PDF

High intraocular pressure (IOP) is the most common risk factor associated with glaucoma in humans. While lowering IOP is effective at reducing the rate of retinal ganglion cell (RGC) loss, to date, no treatment exists to directly preserve these cells affected by damage to the optic nerve. Recently, histone deacetylase-3 (HDAC3) has become a potential therapeutic target because it plays an important role in the early nuclear atrophic events that precede RGC death.

View Article and Find Full Text PDF

Purpose: HDAC3 regulates nuclear atrophy as an early response to axonal injury in retinal ganglion cells (RGCs) following optic nerve crush (ONC). Since conditional knockout of Hdac3 prevents nuclear atrophy post ONC, HDAC3 selective inhibition with RGFP966 through localized and systemic dosing of RGFP966 is necessary for application to acute and chronic models of optic nerve injury.

Methods: C57BL/6 mice were injected intravitreally with 1-10 μM RGFP966 immediately following ONC, and retinas were analyzed at 5, 7, and 14 days for metrics of nuclear atrophy and cell loss.

View Article and Find Full Text PDF

Purpose: Gene therapy of retinal ganglion cells (RGCs) has promise as a powerful therapeutic for the rescue and regeneration of these cells after optic nerve damage. However, early after damage, RGCs undergo atrophic changes, including gene silencing. It is not known if these changes will deleteriously affect transduction and transgene expression, or if the therapeutic protein can influence reactivation of the endogenous genome.

View Article and Find Full Text PDF

The pro-apoptotic BCL2 gene family member, BAX, plays a pivotal role in the intrinsic apoptotic pathway. Under cellular stress, BAX recruitment to the mitochondria occurs when activated BAX forms dimers, then oligomers, to initiate mitochondria outer membrane permeabilization (MOMP), a process critical for apoptotic progression. The activation and recruitment of BAX to form oligomers has been studied for two decades using fusion proteins with a fluorescent reporter attached in-frame to the BAX N-terminus.

View Article and Find Full Text PDF

Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death.

View Article and Find Full Text PDF

Background: Retinal ganglion cell (RGC) soma death is a consequence of optic nerve damage, including in optic neuropathies like glaucoma. The activation of the innate immune network in the retina after nerve damage has been linked to RGC pathology. Since the eye is immune privileged, innate immune functions are the responsibility of the glia, specifically the microglia, astrocytes, and Müller cells that populate the retina.

View Article and Find Full Text PDF

Optic neuropathies are characterized by retinal ganglion cell (RGC) death, resulting in the loss of vision. In glaucoma, the most common optic neuropathy, RGC death is initiated by axonal damage, and can be modeled by inducing acute axonal trauma through procedures such as optic nerve crush (ONC) or optic nerve axotomy. One of the early events of RGC death is nuclear atrophy, and is comprised of RGC-specific gene silencing, histone deacetylation, heterochromatin formation, and nuclear shrinkage.

View Article and Find Full Text PDF

Background: Glaucoma is an optic neuropathy that is characterized by the loss of retinal ganglion cells (RGCs) initiated by damage to axons in the optic nerve. The degeneration and death of RGCs has been thought to occur in two waves. The first is axogenic, caused by direct insult to the axon.

View Article and Find Full Text PDF

Background: Optic nerve damage initiates a series of early atrophic events in retinal ganglion cells (RGCs) that precede the BAX-dependent committed step of the intrinsic apoptotic program. Nuclear atrophy, including global histone deacetylation, heterochromatin formation, shrinkage and collapse of nuclear structure, and the silencing of normal gene expression, comprise an important obstacle to overcome in therapeutic approaches to preserve neuronal function. Several studies have implicated histone deacetylases (HDACs) in the early stages of neuronal cell death, including RGCs.

View Article and Find Full Text PDF

The Rgcs1 quantitative trait locus, on mouse chromosome 5, influences susceptibility of retinal ganglion cells to acute damage of the optic nerve. Normally resistant mice (DBA/2J) congenic for the susceptible allele from BALB/cByJ mice exhibit susceptibility to ganglion cells, not only in acute optic nerve crush, but also to chronic inherited glaucoma that is characteristic of the DBA/2J strain as they age. SNP mapping of this QTL has narrowed the region of interest to 1 Mb.

View Article and Find Full Text PDF

Purpose: Retinal ganglion cells comprise a percentage of the neurons actually residing in the ganglion cell layer (GCL) of the rodent retina. This estimate is useful to extrapolate ganglion cell loss in models of optic nerve disease, but the values reported in the literature are highly variable depending on the methods used to obtain them.

Methods: We tested three retrograde labeling methods and two immunostaining methods to calculate ganglion cell number in the mouse retina (C57BL/6).

View Article and Find Full Text PDF

Purpose: Retinal ganglion cells atrophy during the execution of the intrinsic apoptotic program. This process, which has been termed the apoptotic volume decrease (AVD) in other cell types, has not been well-characterized in ganglion cells.

Methods: Acute optic nerve crush was used to examine neuronal atrophy in the ganglion cell layer in wild-type and Bax-deficient mice.

View Article and Find Full Text PDF

The gene-trap lacZ reporter insertion, ROSA11, in the Cbx5 mouse gene illuminates the regulatory complexity of this locus in Apc(Min) (/+) mice. The insertion site of the β-Geo gene-trap element lies in the 24-kb intron proximal to the coding region of Cbx5. Transcript analysis indicates that two promoters for Cbx5 flank this insertion site.

View Article and Find Full Text PDF

Purpose: Downregulation of normal gene expression in dying retinal ganglion cells has been documented in both acute and chronic models of optic nerve disease. The authors examined the mechanism and timing of this phenomenon in DBA/2J mice, using genetically modified substrains of this inbred line.

Methods: DBA/2J mice, doubly congenic for the Bax mutant allele and the ganglion cell reporter gene Fem1c(Rosa3) (R3), were evaluated to elucidate the timing of loss of normal gene expression during the apoptotic process.

View Article and Find Full Text PDF

Background: Silencing of normal gene expression occurs early in the apoptosis of neurons, well before the cell is committed to the death pathway, and has been extensively characterized in injured retinal ganglion cells. The causative mechanism of this widespread change in gene expression is unknown. We investigated whether an epigenetic change in active chromatin, specifically histone H4 deacetylation, was an underlying mechanism of gene silencing in apoptotic retinal ganglion cells (RGCs) following an acute injury to the optic nerve.

View Article and Find Full Text PDF

Once considered too difficult to use for glaucoma studies, mice are now becoming a powerful tool in the research of the molecular and pathological events associated with this disease. Often adapting technologies first developed in rats, ganglion cell death in mice can be induced using acute models and chronic models of experimental glaucoma. Similarly, elevated IOP has been reported in transgenic animals carrying defects in targeted genes.

View Article and Find Full Text PDF

Retinal ganglion cell death by apoptosis is a well-established outcome in the glaucomatous pathology of the retina. Extensive research into the molecular events underlying this process show us that members of the Bcl2 gene family play a critical role in the activation and control of ganglion cell death. Perhaps the most critical molecule at play is the pro-apoptotic protein BAX.

View Article and Find Full Text PDF

Background: Intrinsic apoptosis of neuronal somas is one aspect of neurodegenerative diseases that can be influenced by genetic background. Genes that affect this process may act as susceptibility alleles that contribute to the complex genetic nature of these diseases. Retinal ganglion cell death is a defining feature of the chronic and genetically complex neurodegenerative disease glaucoma.

View Article and Find Full Text PDF

Background: Several neurodegenerative diseases are influenced by complex genetics that affect an individual's susceptibility, disease severity, and rate of progression. One such disease is glaucoma, a chronic neurodegenerative condition of the eye that targets and stimulates apoptosis of CNS neurons called retinal ganglion cells. Since ganglion cell death is intrinsic, it is reasonable that the genes that control this process may contribute to the complex genetics that affect ganglion cell susceptibility to disease.

View Article and Find Full Text PDF

Recent reports from large clinical trials have clearly demonstrated that lowering intraocular pressure (IOP) in persons with ocular hypertension has a beneficial effect on reducing the progression of glaucomatous disease. Few studies of this effect have been conducted in controlled laboratory settings, however, none have been conducted using non-human primates, the model of experimental glaucoma considered most similar to the human disease. Using data collected retrospectively from a trabeculectomy study using 16 cynomolgous monkeys with experimental ocular hypertension, we evaluated both the threshold of elevated IOP required to cause clinically observable damage to the optic nerve head and also if lowering IOP below this threshold prevents further damage.

View Article and Find Full Text PDF

Purpose: This study was designed to test the hypothesis that photoreceptors are adversely affected in glaucoma. As a measure of this effect, we examined the levels of rod opsin, and red/green and blue cone opsin mRNAs in monkeys with experimental ocular hypertension and glaucoma and in human eyes from donors with diagnosed glaucoma.

Methods: Experimental ocular hypertension was induced in one eye of 19 cynomolgous and 2 rhesus monkeys by laser ablation of the trabecular meshwork.

View Article and Find Full Text PDF