Publications by authors named "Cassandra J Vandenberg"

PARP inhibitor (PARPi) therapy has transformed outcomes for patients with homologous recombination DNA repair (HRR) deficient ovarian cancers, for example those with BRCA1 or BRCA2 gene defects. Unfortunately, PARPi resistance is common. Multiple resistance mechanisms have been described, including secondary mutations that restore the HR gene reading frame.

View Article and Find Full Text PDF

High-grade serous ovarian cancers (HGSOCs) with homologous recombination deficiency (HRD) are initially responsive to poly (ADP-ribose) polymerase inhibitors (PARPi), but resistance ultimately emerges. HGSOC with amplification ( ) are associated with resistance to PARPi and platinum treatments. High replication stress in HRD and HGSOC leads to increased reliance on checkpoint kinase 1 (CHK1), a key regulator of cell cycle progression and the replication stress response.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for understanding cellular heterogeneity and function. However the choice of sample multiplexing reagents can impact data quality and experimental outcomes. In this study, we compared various multiplexing reagents, including MULTI-Seq, Hashtag antibody, and CellPlex, across diverse sample types such as human peripheral blood mononuclear cells (PBMCs), mouse embryonic brain and patient-derived xenografts (PDXs).

View Article and Find Full Text PDF

Background: Despite initial response to platinum-based chemotherapy and PARP inhibitor therapy (PARPi), nearly all recurrent high-grade serous ovarian cancer (HGSC) will acquire lethal drug resistance; indeed, ~15% of individuals have platinum-refractory disease.

Objectives: To determine the potential of anti-microtubule agent (AMA) therapy (paclitaxel, vinorelbine and eribulin) in platinum-resistant or refractory (PRR) HGSC by assessing response in patient-derived xenograft (PDX) models of HGSC.

Design And Methods: Of 13 PRR HGSC PDX, six were primary PRR, derived from chemotherapy-naïve samples (one was mutant) and seven were from samples obtained following chemotherapy treatment in the clinic (five were mutant for either or (, four with prior PARPi exposure), recapitulating the population of individuals with aggressive treatment-resistant HGSC in the clinic.

View Article and Find Full Text PDF

High-grade serous ovarian cancers have low survival rates because of their late presentation with extensive peritoneal metastases and frequent chemoresistance, and require new treatments guided by novel insights into pathogenesis. Here we describe the intrinsic tumour-suppressive activities of interferon-ε (IFNε). IFNε is constitutively expressed in epithelial cells of the fallopian tube, the cell of origin of high-grade serous ovarian cancers, and is then lost during development of these tumours.

View Article and Find Full Text PDF

Background: Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting.

View Article and Find Full Text PDF

splice isoforms Δ11 and Δ11q can contribute to PARP inhibitor (PARPi) resistance by splicing-out the mutation-containing exon, producing truncated, partially-functional proteins. However, the clinical impact and underlying drivers of exon skipping remain undetermined. We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi.

View Article and Find Full Text PDF

The importance of c-MYC in regulating lymphopoiesis and promoting lymphomagenesis is well-established. Far less appreciated is the vital supporting role of MYC's relative MNT. Using Rag1Cre-mediated Mnt deletion in lymphoid progenitor cells, we show here that, during normal T cell development, MNT loss enhances apoptosis, at least in part by elevating expression of the pro-apoptotic BH3-only protein BIM.

View Article and Find Full Text PDF

Unlabelled: Ovarian carcinosarcoma (OCS) is an aggressive and rare tumor type with limited treatment options. OCS is hypothesized to develop via the combination theory, with a single progenitor resulting in carcinomatous and sarcomatous components, or alternatively via the conversion theory, with the sarcomatous component developing from the carcinomatous component through epithelial-to-mesenchymal transition (EMT). In this study, we analyzed DNA variants from isolated carcinoma and sarcoma components to show that OCS from 18 women is monoclonal.

View Article and Find Full Text PDF

High-grade serous ovarian carcinoma (HGSOC) is a genomically unstable malignancy responsible for over 70% of all deaths due to ovarian cancer. With roughly 50% of all HGSOC harboring defects in the homologous recombination (HR) DNA repair pathway (e.g.

View Article and Find Full Text PDF

Background: We tested the hypothesis that inhibitor of apoptosis family (IAP) proteins may be altered in BRCA1-mutated ovarian cancers and that could affect the sensitivity to IAP inhibitors.

Methods: The levels of IAP proteins were evaluated in human cancers and cell lines. Cell lines were used to determine the effects of IAP inhibitors.

View Article and Find Full Text PDF

In high-grade serous ovarian carcinoma (HGSC), deleterious mutations in DNA repair gene are established drivers of defective homologous recombination and are emerging biomarkers of PARP inhibitor (PARPi) sensitivity. promoter methylation (me) is detected at similar frequencies to mutations, yet its effects on PARPi responses remain unresolved.In this study, three HGSC patient-derived xenograft (PDX) models with methylation at most or all examined CpG sites in the promoter show responses to PARPi.

View Article and Find Full Text PDF

Patients with cancer treated with PARP inhibitors (PARPi) experience various side effects, with hematologic toxicity being most common. Short-term treatment of mice with olaparib resulted in depletion of reticulocytes, B-cell progenitors, and immature thymocytes, whereas longer treatment induced broader myelosuppression. We performed a CRISPR/Cas9 screen that targeted DNA repair genes in pre-B lymphoma cell lines as a way to identify strategies to suppress hematologic toxicity from PARPi.

View Article and Find Full Text PDF

TP53 is a critical tumor suppressor that is mutated in approximately 50% of human cancers. Unveiling the downstream target genes of TP53 that fulfill its tumor suppressor function is an area of intense investigation. Zmat3 (also known as Wig-1 or PAG608) is one such downstream target of p53, whose loss in hemopoietic stem cells lacking the apoptosis and cell cycle regulators, Puma and p21, respectively, promotes the development of leukemia.

View Article and Find Full Text PDF

Multiple myeloma is an incurable and fatal cancer of immunoglobulin-secreting plasma cells. Most conventional therapies aim to induce apoptosis in myeloma cells but resistance to these drugs often arises and drives relapse. In this study, we sought to identify the best adjunct targets to kill myeloma cells resistant to conventional therapies using deep profiling by mass cytometry (CyTOF).

View Article and Find Full Text PDF

Deregulated overexpression of MYC is implicated in the development and malignant progression of most (∼70%) human tumors. MYC drives cell growth and proliferation, but also, at high levels, promotes apoptosis. Here, we report that the proliferative capacity of MYC-driven normal and neoplastic B lymphoid cells depends on MNT, a MYC-related transcriptional repressor.

View Article and Find Full Text PDF

Many acute myeloid leukaemias (AMLs) express high levels of BCL-2 and MCL-1, especially after therapy. To test the impact of these anti-apoptotic proteins on AML development and treatment, we used haemopoietic reconstitution to generate MLL-AF9 AMLs expressing BCL-2 or Mcl-1 transgenes. AMLs with elevated BCL-2 or MCL-1 had a higher proportion of mature myeloid cells but, like conventional MLL-AF9 AMLs, were readily transplantable.

View Article and Find Full Text PDF

It has long been assumed that p53 suppresses tumor development through induction of apoptosis, possibly with contributions by cell cycle arrest and cell senescence. However, combined deficiency in these three processes does not result in spontaneous tumor formation as observed upon loss of p53, suggesting the existence of additional mechanisms that are critical mediators of p53-dependent tumor suppression function. To define such mechanisms, we performed in vivo shRNA screens targeting p53-regulated genes in sensitized genetic backgrounds.

View Article and Find Full Text PDF

The transcription factor c-MYC regulates a multiplicity of genes involved in cellular growth, proliferation, metabolism and DNA damage response and its overexpression is a hallmark of many tumours. Since MYC promotes apoptosis under conditions of stress, such as limited availability of nutrients or cytokines, MYC-driven cells are very much dependent on signals that inhibit cell death. Stress signals trigger apoptosis via the pathway regulated by opposing fractions of the BCL-2 protein family and previous genetic studies have shown that the development of B lymphoid tumours in Eµ-Myc mice is critically dependent on expression of pro-survival BCL-2 relatives MCL-1, BCL-W and, to a lesser extent, BCL-X, but not BCL-2 itself, and that sustained growth of these lymphomas is dependent on MCL-1.

View Article and Find Full Text PDF

The transcriptional represser Mnt is a functional antagonist of the proto-oncoprotein Myc. Both Mnt and Myc utilise Max as an obligate partner for DNA binding, and Myc/Max and Mnt/Max complexes compete for occupancy at E-box DNA sequences in promoter regions. We have previously shown in transgenic mouse models that the phenotype and kinetics of onset of haemopoietic tumours varies with the level of Myc expression.

View Article and Find Full Text PDF

Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals, there are two converging apoptosis pathways: the 'extrinsic' pathway, which is triggered by engagement of cell surface 'death receptors' such as Fas/APO-1; and the 'intrinsic' pathway, which is triggered by diverse cellular stresses, and is regulated by pro-survival and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the pro-apoptotic proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types.

View Article and Find Full Text PDF

Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA.

View Article and Find Full Text PDF

Inhibition of the apoptosis pathway controlled by opposing members of the Bcl-2 protein family plays a central role in cancer development and resistance to therapy. To investigate how pro-apoptotic Bcl-2 homology domain 3 (BH3)-only proteins impact on acute myeloid leukemia (AML), we generated mixed lineage leukemia (MLL)-AF9 and MLL-ENL AMLs from BH3-only gene knockout mice. Disease development was not accelerated by loss of Bim, Puma, Noxa, Bmf, or combinations thereof; hence these BH3-only proteins are apparently ineffectual as tumor suppressors in this model.

View Article and Find Full Text PDF

MCL-1 is critical for progenitor cell survival during emergency hematopoiesis, but its role in sustaining cells undergoing transformation and in lymphomagenesis is only poorly understood. We investigated the importance of MCL-1 in the survival of B lymphoid progenitors undergoing MYC-driven transformation and its functional interactions with pro-apoptotic BIM and PUMA and the tumor suppressor p53 in lymphoma development. Loss of one Mcl-1 allele almost abrogated MYC-driven-lymphoma development owing to a reduction in lymphoma initiating pre-B cells.

View Article and Find Full Text PDF

The Fanconi anemia DNA repair pathway is pivotal for the efficient repair of DNA interstrand cross-links. Here, we show that FA-defective (Fancc(-)) DT40 cells arrest in G2 phase following cross-link damage and trigger apoptosis. Strikingly, cell death was reduced in Fancc(-) cells by additional deletion of the BRCA1 tumor suppressor, resulting in elevated clonogenic survival.

View Article and Find Full Text PDF