J Eng Sci Med Diagn Ther
August 2022
Synthetic, self-oscillating models of the human vocal folds are used to study the complex and inter-related flow, structure, and acoustical aspects of voice production. The vocal folds typically collide during each cycle, thereby creating a brief period of glottal closure that has important implications for flow, acoustic, and motion-related outcomes. Many previous synthetic models, however, have been limited by incomplete glottal closure during vibration.
View Article and Find Full Text PDFA method is presented for tracking the internal deformation of self-oscillating vocal fold models using magnetic resonance imaging (MRI). Silicone models scaled to four times life-size to lower the flow-induced vibration frequency were embedded with fiducial markers in a coronal plane. Candidate marker materials were tested using static specimens, and two materials, cupric sulfate and glass, were chosen for testing in the vibrating vocal fold models.
View Article and Find Full Text PDF