Supraphysiological androgen (SPA) treatment can paradoxically restrict growth of castration-resistant prostate cancer with high androgen receptor (AR) activity, which is the basis for use of Bipolar Androgen Therapy (BAT) for patients with this disease. While androgens are widely appreciated to enhance anabolic metabolism, how SPA-mediated metabolic changes alter prostate cancer progression and therapy response is unknown. Here, we report that SPA markedly increased intracellular and secreted polyamines in prostate cancer models.
View Article and Find Full Text PDFPolyamines are small polycationic alkylamines that are absolutely required for the continual growth and proliferation of cancer cells. The polyamine analogue ivospemin, also known as SBP-101, has shown efficacy in slowing pancreatic and ovarian tumor progression in vitro and in vivo and has demonstrated encouraging results in early pancreatic cancer clinical trials. We sought to determine if ivospemin was a viable treatment option for the under-served platinum-resistant ovarian cancer patient population by testing its efficacy in combination with commonly used chemotherapeutics.
View Article and Find Full Text PDFCellular proliferation, function and survival is reliant upon maintaining appropriate intracellular polyamine levels. Due to increased metabolic needs, cancer cells elevate their polyamine pools through coordinated metabolism and uptake. High levels of polyamines have been linked to more immunosuppressive tumor microenvironments (TME) as polyamines support the growth and function of many immunosuppressive cell types such as MDSCs, macrophages and regulatory T-cells.
View Article and Find Full Text PDFSnyder-Robinson syndrome (SRS) results from mutations in spermine synthase (SMS), which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonia, and seizures. Symptom management is the only treatment.
View Article and Find Full Text PDFSnyder-Robinson Syndrome (SRS) is caused by mutations in the spermine synthase (SMS) gene, the enzyme product of which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonic musculature, and seizures, along with other more variable symptoms. Currently, medical management focuses on treating these symptoms without addressing the underlying molecular cause of the disease.
View Article and Find Full Text PDFPolyamines are small polycationic alkylamines involved in many fundamental cellular processes, including cell proliferation, survival, and protection from oxidative stress. Polyamine homeostasis is tightly regulated through coordinated biosynthesis, catabolism, and transport. Due to their continual proliferation, cancer cells maintain elevated intracellular polyamine pools.
View Article and Find Full Text PDFCytosolic histone deacetylase-10 (HDAC10) specifically deacetylates the modified polyamine N-acetylspermidine (N-AcSpd). Although intracellular concentrations of N-AcSpd are low, extracellular sources can be abundant, particularly in the colonic lumen. Extracellular polyamines, including those from the diet and microbiota, can support tumor growth both locally and at distant sites.
View Article and Find Full Text PDFImmunometabolism (Cobham)
July 2022
The awareness that polyamines play a critical role in immune system regulation and function is coming into focus as the biological systems and analytical tools necessary to evaluate their roles have become available. Puleston et al have recently demonstrated that polyamine metabolism plays a central role in helper T-cell lineage determination through the production of the translational cofactor hypusinated eIF5A and faithful epigenetic regulation through proper histone acetylation. Their findings add to the rapidly growing body of data implicating properly controlled polyamine metabolism as essential for a normally functioning immune system.
View Article and Find Full Text PDFRNA interference (RNAi) is an emerging therapeutic modality for cancer, which remains in critical need of effective delivery vectors due to the unfavorable biopharmaceutical properties of small RNAs. Polyamines are essential for functioning of mammalian cells. Dysregulated polyamine metabolism is found in many cancers and has been an attractive therapeutic target in combination therapies.
View Article and Find Full Text PDFNaturally occurring polyamines are absolutely required for cellular growth and proliferation. Many neoplastic cells are reliant on elevated polyamine levels and maintain these levels through dysregulated polyamine metabolism. The modulation of polyamine metabolism is thus a promising avenue for cancer therapeutics and has been attempted with numerous molecules, including enzyme inhibitors and polyamine analogues.
View Article and Find Full Text PDFThe natural mammalian polyamines putrescine, spermidine and spermine are essential for both normal and neoplastic cell function and replication. Dysregulation of metabolism of polyamines and their requirements is common in many cancers. Both clinical and experimental depletion of polyamines have demonstrated their metabolism to be a rational target for therapy; however, the mechanisms through which polyamines can establish a tumour-permissive microenvironment are only now emerging.
View Article and Find Full Text PDFConformationally restrained polyamine analog PG11047 is a well-known drug candidate that modulates polyamine metabolism and inhibits cancer cell growth in a broad spectrum of cancers. Here, we report a structure-activity relationship study of the PG11047 analogs (HPGs) containing alkyl chains of varying length, while keeping the unsaturated spermine backbone unchanged. Synthesis of higher symmetrical homologues was achieved through a synthetic route with fewer steps than the previous route to PG11047.
View Article and Find Full Text PDFPolyamines are small polycationic alkylamines involved in many fundamental cellular processes, including proliferation, nucleic acid synthesis, apoptosis, and protection from oxidative damage. It has been proposed that in addition to these functions, elevated levels of polyamines promote longevity in various biological systems, including yeast, , and murine models. A series of mechanistic studies by multiple investigators has led to the conclusion that addition of exogenous spermidine promotes longevity through autophagy induction; however, these experiments were confounded by the use of mammalian cell culture systems supplemented with fetal bovine serum.
View Article and Find Full Text PDFSnyder-Robinson syndrome (SRS) is an X-linked intellectual disability syndrome caused by a loss-of-function mutation in the spermine synthase () gene. Primarily affecting males, the main manifestations of SRS include osteoporosis, hypotonic stature, seizures, cognitive impairment, and developmental delay. Because there is no cure for SRS, treatment plans focus on alleviating symptoms rather than targeting the underlying causes.
View Article and Find Full Text PDFAlthough ovarian cancer has a low incidence rate, it remains the most deadly gynecologic malignancy. Previous work has demonstrated that the DNMTi 5-Azacytidine (5AZA-C) activates type I interferon signaling to increase IFNγ T cells and natural killer (NK) cells and reduce the percentage of macrophages in the tumor microenvironment. To improve the efficacy of epigenetic therapy, we hypothesized that the addition of α-difluoromethylornithine (DFMO), an ornithine decarboxylase inhibitor, may further decrease immunosuppressive cell populations improving outcome.
View Article and Find Full Text PDF