Publications by authors named "Caspi M"

The β-catenin dependent canonical Wnt signaling pathway plays a crucial role in maintaining normal homeostasis. However, when dysregulated, Wnt signaling is closely associated with various pathological conditions, including inflammation and different types of cancer.Here, we show a new connection between the leukocyte inflammatory response and the Wnt signaling pathway.

View Article and Find Full Text PDF

The introduction of premature termination codons (PTCs), as a result of splicing defects, insertions, deletions, or point mutations (also termed nonsense mutations), lead to numerous genetic diseases, ranging from rare neuro-metabolic disorders to relatively common inheritable cancer syndromes and muscular dystrophies. Over the years, a large number of studies have demonstrated that certain antibiotics and other synthetic molecules can act as PTC suppressors by inducing readthrough of nonsense mutations, thereby restoring the expression of full-length proteins. Unfortunately, most PTC readthrough-inducing agents are toxic, have limited effects, and cannot be used for therapeutic purposes.

View Article and Find Full Text PDF

Carboxypeptidase E (CPE), an essential enzyme in the biosynthetic production line of most peptide hormones and neuropeptides, is predominantly expressed in endocrine tissues and in the nervous system. CPE is active in acidic environments where it cleaves the C'-terminal basic residues of peptide precursors to generate their bioactive form. Consequently, this highly conserved enzyme regulates numerous fundamental biological processes.

View Article and Find Full Text PDF

Coronavirus disease-19 (COVID-19) patients are prone to thrombotic complications that may increase morbidity and mortality. These complications are thought to be driven by endothelial activation and tissue damage promoted by the systemic hyperinflammation associated with COVID-19. However, the exact mechanisms contributing to these complications are still unknown.

View Article and Find Full Text PDF

The Wnt signaling pathways play fundamental roles during both development and adult homeostasis. Aberrant activation of the canonical Wnt signal transduction pathway is involved in many diseases including cancer, and is especially implicated in the development and progression of colorectal cancer. Although extensively studied, new genes, mechanisms and regulatory modulators involved in Wnt signaling activation or silencing are still being discovered.

View Article and Find Full Text PDF

The canonical Wnt pathway is one of the key cellular signaling cascades that regulates, via the transcriptional co-activator β-catenin, numerous embryogenic developmental processes, as well as tissue homeostasis. It is therefore not surprising that misregulation of the Wnt/β-catenin pathway has been implicated in carcinogenesis. Aberrant Wnt signaling has been reported in a variety of malignancies, and its role in both hereditary and sporadic colorectal cancer (CRC), has been the subject of intensive study.

View Article and Find Full Text PDF

Striatin, a subunit of the serine/threonine phosphatase PP2A, is a core member of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complexes. The protein is expressed in the cell junctions between epithelial cells, which play a role in maintaining cell-cell adhesion. Since the cell junctions are crucial for the function of the mammalian inner ear, we examined the localization and function of striatin in the mouse cochlea.

View Article and Find Full Text PDF

Of all genetic mutations causing human disease, premature termination codons (PTCs) that result from splicing defaults, insertions, deletions, and point mutations comprise around 30%. From these mutations, around 11% are a substitution of a single nucleotide that change a codon into a premature termination codon. These types of mutations affect several million patients suffering from a large variety of genetic diseases, ranging from relatively common inheritable cancer syndromes to muscular dystrophy or very rare neuro-metabolic disorders.

View Article and Find Full Text PDF

Decorating emulsion droplets by particles stabilizes foodstuff and pharmaceuticals. Interfacial particles also influence aerosol formation, thus impacting atmospheric CO exchange. While studies of particles at disordered droplet interfaces abound in the literature, such studies for ubiquitous ordered interfaces are not available.

View Article and Find Full Text PDF

As a large number of cancers are caused by nonsense mutations in key genes, read-through of these mutations to restore full-length protein expression is a potential therapeutic strategy. Mutations in the adenomatous polyposis coli (APC) gene initiate the majority of both sporadic and hereditary colorectal cancers (CRC) and around 30% of these mutations are nonsense mutations. Our goal was to test the feasibility and effectiveness of APC nonsense mutation read-through as a potential chemo-preventive therapy in Familial Adenomatous Polyposis (FAP), an inherited CRC syndrome patients.

View Article and Find Full Text PDF

Epigenetic transformations may provide early indicators for cancer and other disease. Specifically, the amount of genomic 5-hydroxymethylcytosine (5-hmC) was shown to be globally reduced in a wide range of cancers. The integration of this global biomarker into diagnostic workflows is hampered by the limitations of current 5-hmC quantification methods.

View Article and Find Full Text PDF

The adherens junctions (AJs) and tight junctions (TJs) provide critical adhesive contacts between neighboring epithelial cells and are crucial for epithelial adhesion, integrity, and barrier functions in a wide variety of tissues and organisms. The striatin protein family, which are part of the striatin interaction phosphatases and kinases complex, are multidomain scaffolding proteins that play important biologic roles. We have previously shown that striatin colocalizes with the tumor suppressor protein adenomatous polyposis coli in the TJs of epithelial cells.

View Article and Find Full Text PDF
Article Synopsis
  • The canonical Wnt signaling pathway is linked to various diseases, particularly colorectal cancer (CRC), and is primarily driven by the protein β-catenin, which activates Wnt target genes.
  • High-Temperature Requirement A1 (HTRA1) is identified as a new component of the Wnt pathway that inhibits Wnt/β-catenin signaling and influences the expression of Wnt target genes.
  • HTRA1 interacts with β-catenin and decreases cell proliferation, suggesting it plays a role as a suppressor of the canonical Wnt signaling pathway.
View Article and Find Full Text PDF

Objective: To report the impact of multiple sclerosis (MS) on patients' quality of life (QoL) compared to systemic lupus erythematosus (SLE) using the 36-Item Short Form (SF-36) health questionnaire in Argentina.

Patients And Methods: Cross-sectional study. All consecutive MS patients, SLE and healthy controls (HC) were included.

View Article and Find Full Text PDF

Background: Most cases of colorectal cancer (CRC) are initiated by inactivation mutations in the APC gene, which is a negative regulator of the Wnt-β-catenin pathway. Patients with familial adenomatous polyposis (FAP) inherit a germline mutation in one APC allele, and loss of the second allele leads to the development of polyps that will turn malignant if not removed. It is not fully understood which molecular mechanisms are activated by APC loss and when the loss of the second APC allele occurs.

View Article and Find Full Text PDF

The Wnt pathway has essential roles in cell proliferation, cell fate determination and tumorigenesis by regulating the expression of a wide range of target genes. As a core signaling cascade, the canonical Wnt pathway is regulated at different levels by numerous proteins. We have previously shown that carboxypeptidase E (CPE) is a novel regulator of the canonical Wnt signaling pathway.

View Article and Find Full Text PDF

Unlabelled: A large number of human diseases are caused by nonsense mutations. These mutations result in premature protein termination and the expression of truncated, usually nonfunctional products. A promising therapeutic strategy for patients suffering from premature termination codon (PTC)-mediated disorders is to suppress the nonsense mutation and restore the expression of the affected protein.

View Article and Find Full Text PDF

The Wnt signaling pathway is an evolutionary conserved system, having pivotal roles during animal development. When over-activated, this signaling pathway is involved in cancer initiation and progression. The canonical Wnt pathway regulates the stability of β-catenin primarily by a destruction complex containing a number of different proteins, including Glycogen synthase kinase 3β (GSK-3β) and Axin, that promote proteasomal degradation of β-catenin.

View Article and Find Full Text PDF

Aberrant activation of the canonical Wnt signal transduction pathway is involved in a large number of human diseases. β-catenin, the key effector protein of the canonical Wnt pathway, functions in the nucleus with T-cell factor/lymphoid enhancer factor (TCF/LEF) to activate expression of Wnt target genes. Here we show that members of the 14-3-3 protein family bind disheveled-2 (Dvl-2) and glycogen synthase-3β (GSK-3β) to attenuate the interaction between GSK-3β and β-catenin.

View Article and Find Full Text PDF

Aberrant activation of the canonical Wnt signal transduction pathway is involved in many diseases including cancer and is especially implicated in the development and progression of colorectal cancer. The key effector protein of the canonical Wnt pathway is β-catenin, which functions with T-cell factor/lymphoid enhancer factor to activate expression of Wnt target genes. In this study, we used a new functional screen based on cell survival in the presence of cDNAs encoding proteins that activate the Wnt pathway thus identifying novel Wnt signaling components.

View Article and Find Full Text PDF

Wnt/β-catenin signaling plays a central role in development and is also involved in a diverse array of diseases. β-Catenin activity is tightly regulated via a multiprotein complex that includes the kinase glycogen synthase kinase-3β (GSK-3β). GSK-3β phosphorylates β-catenin, marking it for ubiquitination and degradation via the proteasome.

View Article and Find Full Text PDF

Adenomatous polyposis coli (APC) is a multifunctional tumor suppressor protein that negatively regulates the Wnt signaling pathway. The APC gene is ubiquitously expressed in various tissues, especially throughout the large intestine and central nervous system. Mutations in the gene encoding APC have been found in most colorectal cancers and in other types of cancer.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7vqggu44ls9kmjlopagsahm16t86h86c): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once