Objective: The aim of the present study was to examine whether 10-20-30 training (consecutive 1-min intervals consisting of 30 s at low-speed, 20 s at moderate-speed, and 10 s at high-speed), performed with submaximal effort during the 10-s high-speed runs, would lead to improved performance as well as increased maximum oxygen uptake (VO -max) and muscle oxidative phosphorylation (OXPHOS). In addition, to examine to what extent the effects would compare to 10-20-30 running conducted with maximal effort.
Design: Nineteen males were randomly assigned to 10-20-30 running performed with either submaximal (SUBMAX; n = 11) or maximal (MAX; n = 8) effort, which was conducted three times/week for 6 weeks (intervention; INT).
Cl channel protein 1 (ClC-1) may be important for excitability and contractility in skeletal muscle, but ClC-1 abundance has not been examined in human muscle. The aim of the present study was to examine ClC-1 abundance in human skeletal muscle, including fiber type specific differences and the effect of exercise training. A commercially available antibody was tested with positive and negative control tissue, and it recognized specifically ClC-1 in the range from 100 to 150 kDa.
View Article and Find Full Text PDFThe aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO -max): 56.4 ± 4.
View Article and Find Full Text PDFThe effect of tapering following a period of high-volume sprint interval training (SIT) and a basic volume of aerobic training on performance and muscle adaptations in moderately trained runners was examined. Eleven (8 men, 3 women) runners [maximum oxygen uptake (V̇o): 56.8 ± 2.
View Article and Find Full Text PDFUnlabelled: The aim of the study was, in runners accustomed to speed endurance training (SET), to examine the effect of increased and maintained frequency of SET on performance and muscular adaptations. After familiarization (FAM) to SET, 18 male (n = 14) and female (n = 4) runners (V̇o: 57.3 ± 3.
View Article and Find Full Text PDFThe aim of this study was to investigate the mRNA response related to mitochondrial biogenesis, metabolism, angiogenesis, and myogenesis in trained human skeletal muscle to speed endurance exercise (S), endurance exercise (E), and speed endurance followed by endurance exercise (S + E). Seventeen trained male subjects (maximum oxygen uptake (VO2-max): 57.2 ± 3.
View Article and Find Full Text PDFThe purpose of this study was to examine whether speed endurance training (SET, repeated 30-s sprints) and heavy resistance training (HRT, 80-90% of 1 repetition maximum) performed in succession are compatible and lead to performance improvements in moderately trained endurance runners. For an 8-wk intervention period (INT) 23 male runners [maximum oxygen uptake (V̇O(2max)) 59 ± 1 ml·min(-1)·kg(-1); values are means ± SE] either maintained their training (CON, n = 11) or performed high-intensity concurrent training (HICT, n = 12) consisting of two weekly sessions of SET followed by HRT and two weekly sessions of aerobic training with an average reduction in running distance of 42%. After 4 wk of HICT, performance was improved (P < 0.
View Article and Find Full Text PDF