Publications by authors named "Casper Kraan"

Knowledge about the cumulative impacts of anthropogenic activities and environmental conditions on marine ecosystems is incomplete and details are lacking. Compositional community changes can occur along gradients, and community data can be used to assess the state of community resilience against combined impacts of variables representing human pressures and environmental conditions. Here we use a machine learning approach, i.

View Article and Find Full Text PDF

Microbial composition and diversity in marine sediments are shaped by environmental, biological, and anthropogenic processes operating at different scales. However, our understanding of benthic microbial biogeography remains limited. Here, we used 16S rDNA amplicon sequencing to characterize benthic microbiota in the North Sea from the top centimeter of 339 sediment samples.

View Article and Find Full Text PDF

Data on marine biota exist in many formats and sources, such as published literature, data repositories, and unpublished material. Due to this heterogeneity, information is difficult to find, access and combine, severely impeding its reuse for further scientific analysis and its long-term availability for future generations. To address this challenge, we present CRITTERBASE, a publicly accessible data warehouse and interactive portal that currently hosts quality-controlled and taxonomically standardized presence/absence, abundance, and biomass data for 18,644 samples and 3,664 benthic taxa (2,824 of which at species level).

View Article and Find Full Text PDF

Background: Species distribution models are commonly used tools to describe diversity patterns and support conservation measures. There is a wide range of approaches to developing SDMs, each highlighting different characteristics of both the data and the ecology of the species or assemblages represented by the data. Yet, signals of species co-occurrences in community data are usually ignored, due to the assumption that such structuring roles of species co-occurrences are limited to small spatial scales and require experimental studies to be detected.

View Article and Find Full Text PDF

Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators.

View Article and Find Full Text PDF

Adding fertiliser to sediments is an established way of studying the effects of eutrophication but a lack of consistent methodology, reporting on enrichment levels, or guidance on application rates precludes rigorous synthesis and meta-analysis. We developed a simple enrichment technique then applied it to 28 sites across an intertidal sandflat. Fertiliser application rates of 150 and 600gNm(-2) resulted in pore water ammonium concentrations respectively 1-110 and 4-580×ambient, with greater elevations observed in deeper (5-7cm) than surface (0-2cm) sediments.

View Article and Find Full Text PDF

Spatial variation in the composition of communities is the product of many biotic and environmental interactions. A neglected factor in the analysis of community distribution patterns is the multi-scale nature of the data, which has implications for understanding ecological processes and the development of conservation and environmental management practice. Drawing on recently established multivariate spatial analyses, we investigate whether including relationships between spatial structure and abiotic variables enable us to better discern patterns of species and communities across scales.

View Article and Find Full Text PDF

Earth is in the midst of a biodiversity crisis that is impacting the functioning of ecosystems and the delivery of valued goods and services. However, the implications of large scale species losses are often inferred from small scale ecosystem functioning experiments with little knowledge of how the dominant drivers of functioning shift across scales. Here, by integrating observational and manipulative experimental field data, we reveal scale-dependent influences on primary productivity in shallow marine habitats, thus demonstrating the scalability of complex ecological relationships contributing to coastal marine ecosystem functioning.

View Article and Find Full Text PDF

Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna.

View Article and Find Full Text PDF

Ongoing statistical sophistication allows a shift from describing species' spatial distributions toward statistically disentangling the possible roles of environmental variables in shaping species distributions. Based on a landscape-scale benthic survey in the Dutch Wadden Sea, we show the merits of spatially explicit generalized estimating equations (GEE). The intertidal macrozoobenthic species, Macoma balthica, Cerastoderma edule, Marenzelleria viridis, Scoloplos armiger, Corophium volutator, and Urothoe poseidonis served as test cases, with median grain-size and inundation time as typical environmental explanatory variables.

View Article and Find Full Text PDF

1. Whether intertidal areas are used to capacity by shorebirds can best be answered by large-scale manipulation of foraging areas. The recent overexploitation of benthic resources in the western Dutch Wadden Sea offers such an 'experimental' setting.

View Article and Find Full Text PDF

Optimality reasoning from behavioural ecology can be used as a tool to infer how animals perceive their environment. Using optimality principles in a 'reversed manner' may enable ecologists to predict changes in population size before such changes actually happen. Here we show that a behavioural anti-predation trait (burrowing depth) of the marine bivalve Macoma balthica can be used as an indicator of the change in population size over the year to come.

View Article and Find Full Text PDF

There is a widespread concern about the direct and indirect effects of industrial fisheries; this concern is particularly pertinent for so-called "marine protected areas" (MPAs), which should be safeguarded by national and international law. The intertidal flats of the Dutch Wadden Sea are a State Nature Monument and are protected under the Ramsar convention and the European Union's Habitat and Birds Directives. Until 2004, the Dutch government granted permission for ~75% of the intertidal flats to be exploited by mechanical dredgers for edible cockles (Cerastoderma edule).

View Article and Find Full Text PDF