Central to spintronics is the interconversion between electronic charge and spin currents, and this can arise from the chirality-induced spin selectivity (CISS) effect. CISS is often studied as magnetoresistance (MR) in two-terminal (2T) electronic nanodevices containing a chiral (molecular) component and a ferromagnet. However, fundamental understanding of when and how this MR can occur is lacking.
View Article and Find Full Text PDFIn monolayer transition metal dichalcogenides helicity-dependent charge and spin photocurrents can emerge, even without applying any electrical bias, due to circular photogalvanic and photon drag effects. Exploiting such circular photocurrents (CPCs) in devices, however, requires better understanding of their behavior and physical origin. Here, we present symmetry, spectral, and electrical characteristics of CPC from excitonic interband transitions in a MoSe monolayer.
View Article and Find Full Text PDFDivacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions. Because of the various polytypes of SiC, hundreds of unique divacancies exist, many with spin properties comparable to the nitrogen-vacancy center in diamond. If ensembles of such spins can be all-optically manipulated, they make compelling candidate systems for quantum-enhanced memory, communication, and sensing applications.
View Article and Find Full Text PDFWe describe a technique that enables a strong, coherent coupling between isolated neutral atoms and mesoscopic conductors. The coupling is achieved by exciting atoms trapped above the surface of a superconducting transmission line into Rydberg states with large electric dipole moments that induce voltage fluctuations in the transmission line. Using a mechanism analogous to cavity quantum electrodynamics, an atomic state can be transferred to a long-lived mode of the fluctuating voltage, atoms separated by millimeters can be entangled, or the quantum state of a solid-state device can be mapped onto atomic or photonic states.
View Article and Find Full Text PDF