Publications by authors named "Caspar Daniel Adenutsi"

Article Synopsis
  • A novel sodium lauryl ether sulfate (SLES) nanofluid was developed to improve oil production in tight oil reservoirs through enhanced imbibition behavior.
  • Experiments using low-field nuclear magnetic resonance (LF-NMR) showed that the SLES nanofluid significantly increased imbibition efficiency, while optimal concentrations of chemicals were necessary to avoid blocking pore spaces.
  • The enhanced oil recovery mechanisms were linked to changes in wettability, capillary pressure, and viscous forces, particularly in micropores and mesopores, offering insights into effective oil extraction strategies.
View Article and Find Full Text PDF

With the rapid development and widespread application of big data and artificial intelligence, the upgrading of digital and intelligent industries has been rapidly popularized in the oil and gas industry. First, based on the theory of ″regional data lake″, the digital nature of the CBM governance system is analyzed, and the optimization model of CBM governance for different data types is established. Second, considering the geological characteristics and development mode of the CBM reservoir, the regional data lake expansion model is established.

View Article and Find Full Text PDF

Spontaneous imbibition of surfactants could efficiently enhance oil recovery in low permeability sandstone reservoirs. The majority of studies have considered the application of individual surfactants to alter wettability and reduce interfacial tension (IFT). However, a significant synergistic effect has been reported between different types of surfactants and between salts and surfactants.

View Article and Find Full Text PDF

Technical advances in hydraulic fracturing and horizontal drilling technologies enable shale to be commercially exploited. Due to the technical and economic limitations of well testing in shale gas plays, rate transient analysis has become a more attractive option. After hydraulic fracturing, flow mechanisms in multiple scaled pores of shale become extraordinarily complicated: adsorption in nanopores, diffusion in micropores, and non-Darcy flow in macropores.

View Article and Find Full Text PDF

Humin (HM) and kerogen (KG) are widespread in soils and sediments, which have strong retention effects on the migration and transformation of Cr(VI) in subsurface environment. Previous studies mainly focused on the interaction between Cr(VI) and soluble organic matter, such as humic acid (HA); however, the adsorption and reduction mechanism for Cr(VI) by insoluble HM and KG are still unclear, the processes of which might be quite different from HA due to their different sources and humification degrees. Consequently, in this study, HA, HM and KG extracted from different sources were used to explore the adsorption, reduction and complexation mechanisms of Cr(VI) in soils and sediments, based on which a multi-step kinetic model of Cr(VI) was carried out.

View Article and Find Full Text PDF

Shale oil reserves play an important role in the oil & gas industry. The investigation of oil transport behavior in shale nanopores is crucial in the successful exploitation of shale oil reservoirs. However, the transport mechanisms of oil in shale nanopores are still not understood.

View Article and Find Full Text PDF

High performance clay swelling inhibitors play a vital role in improving inhibition characteristics of shales. The linkages between the inhibition's characteristics of the non-ionic surfactant extract from bio-based inhibitors are yet to be fully explored in the literature. This paper reports the use of a crude extract containing saponins from (CO) leaf, which act as surfactants for inhibiting shale hydration.

View Article and Find Full Text PDF