Publications by authors named "Caspar D"

Article Synopsis
  • Low-dose interleukin-2 (IL-2) immunotherapy shows promise for autoimmune diseases by stimulating regulatory T (Treg) cells, particularly in systemic lupus erythematosus (SLE) patients.
  • A clinical trial revealed that low-dose IL-2 activates various immune cells, notably Treg cells with skin-homing capabilities, which interact with skin endothelial cells.
  • Comprehensive analysis uncovered different subsets of Treg cells influenced by IL-2, indicating targetable immune responses in the treatment of SLE.
View Article and Find Full Text PDF

X-ray crystallographic measurement of the number of solvent electrons in the unit cell of a protein crystal equilibrated with aqueous solutions of different densities provides information about preferential hydration in the crystalline state. Room temperature and cryo-cooled rhombohedral insulin crystals were equilibrated with 1.2M trehalose to study the effect of lowered water activity.

View Article and Find Full Text PDF

The structures of the compact and swollen southern bean mosaic virus (SBMV) particles have been compared by X-ray diffraction and proton magnetic resonance (PMR). Small-angle X-ray scattering showed that removal of divalent cations at alkaline pH causes the particle diameter to increase from 289Å in the native SBMV by 12% in solution and by 9% in microcrystals. The swelling is fully reversible upon re-addition of Ca and Mg ions, as shown by the X-ray patterns at 6Å resolution and by the 270MHz PMR spectra.

View Article and Find Full Text PDF

In the double-shelled capsid of Phytoreovirus, the outer capsid attaches firmly to the 3-fold axes of the T=1 core. It then forms a T=13 lattice via lateral interactions among the P8 trimers (Wu et al., 2000, Virology 271, 18-25).

View Article and Find Full Text PDF

Mass per length (mpl) measurements on single amyloid fibrils that specifically propagate the [VH], [VK], and [VL] strains of the yeast prion [PSI] reveal unanticipated differences in their structures. Many fibrils have approximately 1.0 prion molecule per 4.

View Article and Find Full Text PDF

The structural and energetic consequences of modifications to the hydrophobic cavity of interleukin 1-beta (IL-1beta) are described. Previous reports demonstrated that the entirely hydrophobic cavity of IL-1beta contains positionally disordered water. To gain a better understanding of the nature of this cavity and the water therein, a number of mutant proteins were constructed by site-directed mutagenesis, designed to result in altered hydrophobicity of the cavity.

View Article and Find Full Text PDF

Triplet phases recorded from insulin crystals were used to measure the improvement of phases during model refinement and to quantify the contribution made by each step in the refinement. Conventional amplitude data were recorded to 1.5 A resolution from rhombohedral pig insulin crystals using 1.

View Article and Find Full Text PDF

The seven-residue peptide GNNQQNY from the N-terminal region of the yeast prion protein Sup35, which forms amyloid fibers, colloidal aggregates and highly ordered nanocrystals, provides a model system for characterizing the elusively protean cross-beta conformation. Depending on preparative conditions, orthorhombic and monoclinic crystals with similar lath-shaped morphology have been obtained. Ultra high-resolution (<0.

View Article and Find Full Text PDF

Understanding how metal binding regulates the activity of the diphtheria toxin repressor protein (DtxR) requires information about the structure in solution. We have prepared a DtxR mutant construct with three additional N-terminal residues, Gly-Ser-His-DtxR(Cys-102 --> Asp), that retains metal-binding capabilities, but remains monomeric in solution and does not bind DNA under conditions that effect dimerization and DNA binding in the functional DtxR(Cys-102 --> Asp) construct. Although the interaction properties of this inactive mutant in solution are very different from that of active repressors, crystallization imposes the same dimeric structure as observed in all crystal forms of the active repressor with and without bound metal.

View Article and Find Full Text PDF

The stacked disk aggregate of tobacco mosaic virus protein is an intriguing object due to its high degree of stability, in spite of indications that the aggregate is held together to a great extent by water-mediated interactions between adjacent protein rings. Here, we present a set of models that were constructed using the atomic coordinates of the four-layer aggregate, and compare these with a three-dimensional reconstruction of the stacked disk obtained by means of cryoelectron microscopy and helical image processing. The comparison of the four possible models of the stacked disk with the data shows that there is a better correlation of the data with the left-handed model built from the A-A ring pair coordinates than with the two models involving the A-B ring pair, or with the right-handed model of the A-A ring pair.

View Article and Find Full Text PDF

The diphtheria toxin repressor (DtxR) is the best-characterized member of a family of homologous proteins that regulate iron uptake and virulence gene expression in the Gram-positive bacteria. DtxR contains two domains that are separated by a short, unstructured linker. The N-terminal domain is structurally well-defined and is responsible for Fe2+ binding, dimerization, and DNA binding.

View Article and Find Full Text PDF

Water in the hydrophobic cavity of human interleukin 1beta, which was detected by NMR spectroscopy but was invisible by high resolution x-ray crystallography, has been mapped quantitatively by measurement and phasing of all of the low resolution x-ray diffraction data from a single crystal. Phases for the low resolution data were refined by iterative density modification of an initial flat solvent model outside the envelope of the atomic model. The refinement was restrained by the condition that the map of the difference between the electron density distribution in the full unit cell and that of the atomic model be flat within the envelope of the well ordered protein structure.

View Article and Find Full Text PDF

X-ray structures of cubic insulin crystals in high concentrations of glucose at different pH levels and temperatures have been refined to high resolution. We have identified one glucose-binding site near the N-terminus of the A-chain whose occupancy is pH dependent. The effects of reduced water activity on the ordered protein and solvent structures have been examined.

View Article and Find Full Text PDF

Previous x-ray studies (2.8-A resolution) on crystals of tobacco mosaic virus coat protein grown from solutions containing high salt have characterized the structure of the protein aggregate as a dimer of a bilayered cylindrical disk formed by 34 chemically identical subunits. We have determined the crystal structure of the disk aggregate at 2.

View Article and Find Full Text PDF

The coat protein of tobacco mosaic virus is known to form three different classes of aggregate, depending on environmental conditions, namely helical, disk, and A-protein. Among the disk aggregates, there are four-layer, six-layer, and long stacks, which can be obtained by varying the ionic strength and temperature conditions during the association process. The four-layer aggregate has been crystallized, and its structure solved to atomic resolution.

View Article and Find Full Text PDF

To demonstrate that crystallographic methods can be applied to index and interpret diffraction patterns from well-ordered quasicrystals that display non-crystallographic 5-fold symmetry, we have characterized the properties of a series of periodic two-dimensional lattices built from pentagons, called Fibonacci pentilings, which resemble aperiodic Penrose tilings. The computed diffraction patterns from periodic pentilings with moderate size unit cells show decagonal symmetry and are virtually indistinguishable from that of the infinite aperiodic pentiling. We identify the vertices and centers of the pentagons forming the pentiling with the positions of transition metal atoms projected on the plane perpendicular to the decagonal axis of quasicrystals whose structure is related to crystalline eta phase alloys.

View Article and Find Full Text PDF

Insufficient sampling of conformational sub-states by current molecular dynamics simulations accounts for deficiencies in representations of the fluctuating interatomic separations in macromolecules.

View Article and Find Full Text PDF

The average contact distance between protein and solvent surface atoms in cubic insulin crystals has been determined from two sets of 15 A resolution neutron diffraction data. A contact distance between the water hydrogen sites and the protein surface that is significantly shorter than the average protein-water oxygen contact distance implies that many water molecules are oriented with hydrogen atoms pointed towards the protein surface. The shape of the protein/solvent interface is consistent with the protein envelope obtained from atomic co-ordinates.

View Article and Find Full Text PDF

Crystallographic analysis at 2-A resolution of the selective binding of dihalogenated methane, ethane, and ethylene compounds in the cavity on the cubic insulin dimer axis provides a model for anesthetic-protein interactions. At pH 6-11, 1,2-dichloroethane binds isomorphically in the right-handed cis-conformation, displacing four water molecules from the invariant cavity. Lowering the pH to 5.

View Article and Find Full Text PDF

The development of low-dose electron cryo-microscopy has provided the means to see structural details to better than 10 A resolution in helical structures. The application of techniques of image analysis to micrographs can yield accurate phases, but not amplitudes with which to generate three-dimensional maps of the structure. Electron diffraction can provide reliable amplitudes, which can be combined with the phases from the images.

View Article and Find Full Text PDF

To determine the distribution of monovalent cations around a protein we have measured anomalous scattering diffraction data from Tl-containing cubic insulin crystals at pH 8 and pH 10.5. The differences between Bijvoet reflection pairs within each set of data were used to calculate anomalous scattering difference maps.

View Article and Find Full Text PDF

Cubic insulin crystals contain a binding site for monovalent cations in a cavity of the crystal dyad in which the bound cation is ligated by protein atomic dipoles and water molecules. These types of interaction are analogous to interactions that occur in small cation-selective carrier and channel molecules. X-ray diffraction data collected from cubic insulin crystals containing Li+, Na+, K+, NH4+, Rb+, and Tl+ show that (i) the differences in cation size do not cause any large alteration in the protein structure around the cation, and (ii) the bound cation is co-ordinated by one or two water molecules, depending on its ionic radii.

View Article and Find Full Text PDF