Single-particle tracking (SPT) has been extensively used to obtain information about diffusion and directed motion in a wide range of biological applications. Recently, new methods have appeared for obtaining precise (10s of nm) spatial information in three dimensions (3D) with high temporal resolution (measurements obtained every 4 ms), which promise to more accurately sense the true dynamical behavior in the natural 3D cellular environment. Despite the quantitative 3D tracking information, the range of mathematical methods for extracting information about the underlying system has been limited mostly to mean-squared displacement analysis and other techniques not accounting for complex 3D kinetic interactions.
View Article and Find Full Text PDFProgrammed mRNA localization to specific subcellular compartments for localized translation is a fundamental mechanism of post-transcriptional regulation that affects many, and possibly all, mRNAs in eukaryotes. We describe here a systematic approach to identify the RNA cargoes associated with the cytoskeletal motor proteins of Saccharomyces cerevisiae in combination with live-cell 3D super-localization microscopy of endogenously tagged mRNAs. Our analysis identified widespread association of mRNAs with cytoskeletal motor proteins, including association of Myo3 with mRNAs encoding key regulators of actin branching and endocytosis such as WASP and WIP.
View Article and Find Full Text PDFOptical imaging of single biomolecules and complexes in living cells provides a useful window into cellular processes. However, the three-dimensional dynamics of most important biomolecules in living cells remains essentially uncharacterized. The precise subcellular localization of mRNA-protein complexes plays a critical role in the spatial and temporal control of gene expression, and a full understanding of the control of gene expression requires precise characterization of mRNA transport dynamics beyond the optical diffraction limit.
View Article and Find Full Text PDFRegulation of eukaryotic gene expression depends on groups of related proteins acting at the levels of chromatin organization, transcriptional initiation, RNA processing, and nuclear transport. However, a unified understanding of how these different levels of transcriptional control interact has been lacking. Here, we combine genome-wide protein-DNA binding data from multiple sources to infer the connections between functional groups of regulators in Saccharomyces cerevisiae.
View Article and Find Full Text PDFThe proteasome can regulate transcription through proteolytic processing of transcription factors and via gene locus binding, but few targets of proteasomal regulation have been identified. Using genome-wide location analysis and transcriptional profiling in Saccharomyces cerevisiae, we have established which genes are bound and regulated by the proteasome and by Spt23 and Mga2, transcription factors activated by the proteasome. We observed proteasome association with gene sets that are highly transcribed, controlled by the mating type loci, and involved in lipid metabolism.
View Article and Find Full Text PDFAlthough the spatial location of genes within the nucleus has been implicated in their transcriptional status, little is known about the dynamics of gene location that accompany large-scale changes in gene expression. The mating of haploid yeast Saccharomyces cerevisiae is accompanied by a large-scale change in transcription and developmental program. We examined changes in nuclear organization that accompany stimulus by the mating pheromone alpha factor and found that most alpha-factor-induced genes become associated with components of the nuclear envelope.
View Article and Find Full Text PDFHmt1 is the major type I arginine methyltransferase in the yeast Saccharomyces cerevisiae and facilitates the nucleocytoplasmic transport of mRNA-binding proteins through their methylation. Here we demonstrate that Hmt1 is recruited during the beginning of the transcriptional elongation process. Hmt1 methylates Yra1 and Hrp1, two mRNA-binding proteins important for mRNA processing and export.
View Article and Find Full Text PDFThe association of genes with the nuclear pore complex (NPC) and nuclear transport factors has been implicated in transcriptional regulation. We therefore examined the association of components of the nuclear transport machinery including karyopherins, nucleoporins, and the Ran guanine-nucleotide exchange factor (RanGEF) with the Saccharomyces cerevisiae genome. We find that most nucleoporins and karyopherins preferentially associate with a subset of highly transcribed genes and with genes that possess Rap1 binding sites whereas the RanGEF preferentially associates with transcriptionally inactive genes.
View Article and Find Full Text PDFThe production of a mature mRNA requires the assembly and cooperation of numerous complexes before nuclear export. The deleterious effects of intron-containing pre-mRNA leakage into the cytoplasm necessitate mechanisms to prevent premature export of partially processed or unprocessed messages. A new study demonstrates that the Saccharomyces cerevisiae protein Mlp1 specifically retains intron-containing pre-mRNAs in the nucleus.
View Article and Find Full Text PDFThe highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIF5A domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect.
View Article and Find Full Text PDFProteins bearing canonical nuclear localization sequences are imported into the nucleus by the importin/karyopherin-alpha/beta heterodimer. Recycling of the importin-alpha subunit to the cytoplasm requires the action of Cas, a member of the importin-beta superfamily. In the yeast Saccharomyces ceresivisiae, the essential gene CSE1 encodes a Cas homologue that exports the yeast importin-alpha protein Srp1p/Kap60p from the nucleus.
View Article and Find Full Text PDF