Publications by authors named "Casley B Queiroz"

Endophytic fungi are microorganisms that inhabit internal plant tissues without causing apparent damage. During the infection process, both endophytic and phytopathogenic fungi secrete proteins to resist or supplant the plant's defense mechanisms. This study analyzed the predicted secretomes of six species of endophytic fungi and compared them with predicted secretomes of eight fungal species with different lifestyles: saprophytic, necrotrophic, hemibiotrophic, and biotrophic.

View Article and Find Full Text PDF

The fungus Colletotrichum lindemuthianum is the causal agent of anthracnose in the common bean (Phaseolus vulgaris), and anthracnose is one of the most devastating diseases of this plant species. However, little is known about the proteins that are essential for the fungus-plant interactions. Knowledge of the fungus' arsenal of effector proteins is of great importance for understanding this pathosystem.

View Article and Find Full Text PDF

Colletotrichum lindemuthianum, the causal agent of anthracnose, is responsible for significant damage in the common bean (Phaseolus vulgaris L.). Unraveling the genetic mechanisms involved in the plant/pathogen interaction is a powerful approach for devising efficient methods to control this disease.

View Article and Find Full Text PDF

Fungi of the genus Colletotrichum are economically important and are used as models in plant-pathogen interaction studies. In this study, the complete mitochondrial genomes of two Colletotrichum lindemuthianum isolates were sequenced and compared with the mitochondrial genomes of seven species of Colletotrichum. The mitochondrial genome of C.

View Article and Find Full Text PDF

is the causal agent of anthracnose in common beans, one of the main limiting factors of their culture. Here, we report for the first time, to our knowledge, a draft of the complete genome sequences of two isolates belonging to 83.501 and 89 A 2-3 of .

View Article and Find Full Text PDF

Transposons are an important source of genetic variation. The phytopathogen Moniliophthora perniciosa shows high level of variability but little is known about the role of class I elements in shaping its genome. In this work, we aimed the characterization of a new gypsy/Ty3 retrotransposon species, named MpSaci, in the M.

View Article and Find Full Text PDF

Pseudocercospora fijiensis is the etiological agent of black Sigatoka, which is currently considered as one of the most destructive banana diseases in all locations where it occurs. It is estimated that a large portion of the P. fijiensis genome consists of transposable elements, which allows researchers to use transposon-based molecular markers in the analysis of genetic variability in populations of this pathogen.

View Article and Find Full Text PDF