Publications by authors named "Caslav Brukner"

The current interest in laboratory detection of entanglement mediated by gravity was sparked by an information-theoretic argument: entanglement mediated by a local field certifies that the field is not classical. Previous derivations of the effect modeled gravity as instantaneous; here we derive it from linearized quantum general relativity while keeping Lorentz invariance explicit, using the path-integral formalism. In this framework, entanglement is clearly mediated by a quantum feature of the field.

View Article and Find Full Text PDF

The current theories of quantum physics and general relativity on their own do not allow us to study situations in which the gravitational source is quantum. Here, we propose a strategy to determine the dynamics of objects in the presence of mass configurations in superposition, and hence an indefinite spacetime metric, using quantum reference frame (QRF) transformations. Specifically, we show that, as long as the mass configurations in the different branches are related via relative-distance-preserving transformations, one can use an extension of the current framework of QRFs to change to a frame in which the mass configuration becomes definite.

View Article and Find Full Text PDF

In an ordinary quantum algorithm the gates are applied in a fixed order on the systems. The introduction of indefinite causal structures allows us to relax this constraint and control the order of the gates with an additional quantum state. It is known that this quantum-controlled ordering of gates can reduce the query complexity in deciding a property of black-box unitaries with respect to the best algorithm in which the gates are applied in a fixed order.

View Article and Find Full Text PDF

A still widely debated question in the field of relativistic quantum information is whether entanglement and the degree of violation of Bell's inequalities for massive relativistic particles are frame independent or not. At the core of this question is the effect that spin gets entangled with the momentum degree of freedom at relativistic velocities. Here, we show that Bell's inequalities for a pair of particles can be maximally violated in a special-relativistic regime, even without any postselection of the momentum of the particles.

View Article and Find Full Text PDF

Quantum field theory is completely characterized by the field correlations between spacetime points. In turn, some of these can be accessed by locally coupling to the field simple quantum systems, also known as particle detectors. In this letter we consider what happens when a quantum-controlled superposition of detectors at different space-time points is used to probe the correlations of the field.

View Article and Find Full Text PDF

The standard formulation of quantum theory relies on a fixed space-time metric determining the localisation and causal order of events. In general relativity, the metric is influenced by matter, and is expected to become indefinite when matter behaves quantum mechanically. Here, we develop a framework to operationally define events and their localisation with respect to a quantum clock reference frame, also in the presence of gravitating quantum systems.

View Article and Find Full Text PDF

The spin is the prime example of a qubit. Encoding and decoding information in the spin qubit is operationally well defined through the Stern-Gerlach setup in the nonrelativistic (i.e.

View Article and Find Full Text PDF

Time has a fundamentally different character in quantum mechanics and in general relativity. In quantum theory events unfold in a fixed order while in general relativity temporal order is influenced by the distribution of matter. When matter requires a quantum description, temporal order is expected to become non-classical-a scenario beyond the scope of current theories.

View Article and Find Full Text PDF

In physics, every observation is made with respect to a frame of reference. Although reference frames are usually not considered as degrees of freedom, in all practical situations it is a physical system which constitutes a reference frame. Can a quantum system be considered as a reference frame and, if so, which description would it give of the world? Here, we introduce a general method to quantise reference frame transformations, which generalises the usual reference frame transformation to a "superposition of coordinate transformations".

View Article and Find Full Text PDF

In his famous thought experiment, Wigner assigns an entangled state to the composite quantum system made up of Wigner's friend and her observed system. While the two of them have different accounts of the process, each Wigner and his friend can in principle verify his/her respective state assignments by performing an appropriate measurement. As manifested through a click in a detector or a specific position of the pointer, the outcomes of these measurements can be regarded as reflecting directly observable "facts".

View Article and Find Full Text PDF

Investigating the role of causal order in quantum mechanics has recently revealed that the causal relations of events may not be a priori well defined in quantum theory. Although this has triggered a growing interest on the theoretical side, creating processes without a causal order is an experimental task. We report the first decisive demonstration of a process with an indefinite causal order.

View Article and Find Full Text PDF

In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction.

View Article and Find Full Text PDF

In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity.

View Article and Find Full Text PDF

Quantum computers achieve a speed-up by placing quantum bits (qubits) in superpositions of different states. However, it has recently been appreciated that quantum mechanics also allows one to 'superimpose different operations'. Furthermore, it has been shown that using a qubit to coherently control the gate order allows one to accomplish a task--determining if two gates commute or anti-commute--with fewer gate uses than any known quantum algorithm.

View Article and Find Full Text PDF

It is usually assumed that a quantum computation is performed by applying gates in a specific order. One can relax this assumption by allowing a control quantum system to switch the order in which the gates are applied. This provides a more general kind of quantum computing that allows transformations on blackbox quantum gates that are impossible in a circuit with fixed order.

View Article and Find Full Text PDF

The idea that events obey a definite causal order is deeply rooted in our understanding of the world and at the basis of the very notion of time. But where does causal order come from, and is it a necessary property of nature? Here, we address these questions from the standpoint of quantum mechanics in a new framework for multipartite correlations that does not assume a pre-defined global causal structure but only the validity of quantum mechanics locally. All known situations that respect causal order, including space-like and time-like separated experiments, are captured by this framework in a unified way.

View Article and Find Full Text PDF

Current attempts to probe general relativistic effects in quantum mechanics focus on precision measurements of phase shifts in matter-wave interferometry. Yet, phase shifts can always be explained as arising because of an Aharonov-Bohm effect, where a particle in a flat space-time is subject to an effective potential. Here we propose a quantum effect that cannot be explained without the general relativistic notion of proper time.

View Article and Find Full Text PDF

Quantum discord characterizes "nonclassicality" of correlations in quantum mechanics. It has been proposed as the key resource present in certain quantum communication tasks and quantum computational models without containing much entanglement. We obtain a necessary and sufficient condition for the existence of nonzero quantum discord for any dimensional bipartite states.

View Article and Find Full Text PDF

Bell conjectured that a positive Wigner function does not allow violation of the inequalities imposed by local hidden variable theories. A requirement for this conjecture is "when phase space measurements are performed." We introduce the theory-independent concept of "operationally local transformations" which refers to the change of the switch on a local measurement apparatus.

View Article and Find Full Text PDF

We derive monogamy relations (tradeoffs) between strengths of violations of Bell's inequalities from the nonsignaling condition. Our result applies to general Bell inequalities with an arbitrary large number of partners, outcomes, and measurement settings. The method is simple, efficient, and does not require linear programing.

View Article and Find Full Text PDF

We prove that the results of a finite set of general quantum measurements on an arbitrary dimensional quantum system can be simulated using a polynomial (in measurements) number of hidden-variable states. In the limit of infinitely many measurements, our method gives models with the minimal number of hidden-variable states, which scales linearly with the number of measurements. These results can find applications in foundations of quantum theory, complexity studies, and classical simulations of quantum systems.

View Article and Find Full Text PDF

Why do we not experience a violation of macroscopic realism in everyday life. Normally, no violation can be seen either because of decoherence or the restriction of coarse-grained measurements, transforming the time evolution of any quantum state into a classical time evolution of a statistical mixture. We find the sufficient condition for these classical evolutions for spin systems under coarse-grained measurements.

View Article and Find Full Text PDF

A simple geometrical criterion gives experimentally friendly sufficient conditions for entanglement. Its generalization gives a necessary and sufficient condition. It is linked with a family of entanglement identifiers, which is strictly richer than the family of entanglement witnesses.

View Article and Find Full Text PDF

Conceptually different from the decoherence program, we present a novel theoretical approach to macroscopic realism and classical physics within quantum theory. It focuses on the limits of observability of quantum effects of macroscopic objects, i.e.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: