To determine if fluoride's established negative impact on adult kidney health begins during gestation, an intergenerational model of Wistar rats was exposed to two doses of fluoride (2.5 or 5.0 mg/kg/day via gavage) 20 days before mating and during gestation (20 days).
View Article and Find Full Text PDFColorectal cancer (CRC) ranks among the most widespread malignancies globally, with early detection significantly influencing prognosis. Employing a systems biology approach, we aimed to unravel the intricate mRNA-miRNA network linked to CRC pathogenesis, potentially yielding diagnostic biomarkers. Through an integrative analysis of microarray, Bulk RNA-seq, and single-cell RNA-seq data, we explored CRC-related transcriptomes comprehensively.
View Article and Find Full Text PDFObjective And Design: Immunoglobulin A nephropathy (IgAN) is a kidney disease characterized by the accumulation of IgA deposits in the glomeruli of the kidney, leading to inflammation and damage to the kidney. The inflammatory markers involved in IgAN remain to be defined. Gene expression analysis platforms, such as the NanoString nCounter system, are promising screening and diagnostic tools, especially in oncology.
View Article and Find Full Text PDFTungsten is widely used in medical, industrial, and military applications. The environmental exposure to tungsten has increased over the past several years, and few studies have addressed its potential toxicity. In this study, we evaluated the effects of chronic oral tungsten exposure (100 ppm) on renal inflammation in male mice.
View Article and Find Full Text PDFCan J Kidney Health Dis
December 2022
Purpose Of Conference: New discoveries arising from investigations into fundamental aspects of kidney development and function in health and disease are critical to advancing kidney care. Scientific meetings focused specifically on fundamental biology of the kidney can facilitate interactions, support the development of collaborative groups, and accelerate translation of key findings. The Canadian fundamental kidney researcher community has lacked such a forum.
View Article and Find Full Text PDFNeoantigens derived from somatic DNA alterations are ideal cancer-specific targets. In recent years, the combination therapy of PD-1/PD-L1 blockers and neoantigen vaccines has shown clinical efficacy in original PD-1/PD-L1 blocker non-responders. However, not all somatic DNA mutations result in immunogenicity among cancer cells and efficient tools to predict the immunogenicity of neoepitopes are still urgently needed.
View Article and Find Full Text PDFRenal Cell Carcinoma (RCC) is the most common form of all renal cancer cases, and well-known for its highly aggressive metastatic behavior. SMOC2 is a recently described non-structural component of the extracellular matrix (ECM) that is highly expressed during tissue remodeling processes with emerging roles in cancers, yet its role in RCC remains elusive. Using gene expression profiles from patient samples, we identified SMOC2 as being significantly expressed in RCC tissue compared to normal renal tissue, which correlated with shorter RCC patient survival.
View Article and Find Full Text PDFDespite strong preclinical data supporting the use of mineralocorticoid receptor antagonists (MRAs) to provide cardiorenal protection in rodent models of diabetes, the clinical evidence of their utility in treating chronic kidney disease (CKD) has been limited. Two major clinical trials (FIDELIO-DKD and FIGARO-DKD) including more than 13,000 patients with albuminuric CKD and Type 2 diabetes randomized to placebo or finerenone (MRA) have recently provided exciting results showing a significant risk reduction for kidney and cardiovascular outcomes. In this review, we will summarize the major findings of these trials, together with post-hoc and pooled analyses that have allowed evaluation of the efficacy and safety of finerenone across the spectrum of CKD, revealing significant protective effects of finerenone against kidney failure, new-onset atrial fibrillation or flutter, new-onset heart failure, cardiovascular death, and first and total heart-failure hospitalizations.
View Article and Find Full Text PDFTungsten is a naturally occurring transition element used in a broad range of applications. As a result of its extensive use, we are increasingly exposed to tungsten from our environment, including potable water, since tungsten can become bioaccessible in ground sources. The kidneys are particularly susceptible to tungsten exposure as this is the main site for tungsten excretion.
View Article and Find Full Text PDFEndothelial dysfunction has been shown to play an important role in the pathogenesis of glomerular damage during diabetic kidney disease (DKD). As such, a better understanding of the molecular mechanisms involved in glomerular endothelial dysfunctions could provide novel therapeutic strategies for the prevention of DKD. We have previously shown that Alk1/BMP9 signaling plays an important function to maintain vascular integrity in diabetic animals.
View Article and Find Full Text PDFSystemic sclerosis is a rare chronic heterogenous disease that involves inflammation and vasculopathy, and converges in end-stage development of multisystem tissue fibrosis. The loss of tight spatial distribution and temporal expression of proteins in the extracellular matrix (ECM) leads to progressive organ stiffening, which is a hallmark of fibrotic disease. A group of nonstructural matrix proteins, known as matricellular proteins (MCPs) are implicated in dysregulated processes that drive fibrosis such as ECM remodeling and various cellular behaviors.
View Article and Find Full Text PDFThe extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM.
View Article and Find Full Text PDFFibrosis is the most common pathophysiological manifestation of Chronic Kidney Disease (CKD). It is defined as excessive deposition of extracellular matrix (ECM) proteins. Embedded within the ECM are a family of proteins called Matricellular Proteins (MCPs), which are typically expressed during chronic pathologies for ECM processing.
View Article and Find Full Text PDFPurpose Of Review: The current review will discuss on the progress of studying the transition phase between acute kidney injury (AKI) and chronic kidney disease (CKD) through improved animal models, common AKI and CKD pathways, and how human studies may inform different translational approaches.
Sources Of Information: PubMed and Google Scholar.
Methods: A narrative review was performed using the main terms "acute kidney injury," "chronic kidney disease," "end-stage renal disease," "animal models," "review," "decision-making," and "translational research.
Phospholipase D4 (PLD4), a single-pass transmembrane glycoprotein, is among the most highly upregulated genes in murine kidneys subjected to chronic progressive fibrosis, but the function of PLD4 in this process is unknown. Here, we found PLD4 to be overexpressed in the proximal and distal tubular epithelial cells of murine and human kidneys after fibrosis. Genetic silencing of PLD4, either globally or conditionally in proximal tubular epithelial cells, protected mice from the development of fibrosis.
View Article and Find Full Text PDFSecreted modular calcium-binding protein 2 (SMOC2) belongs to the secreted protein acidic and rich in cysteine (SPARC) family of matricellular proteins whose members are known to modulate cell-matrix interactions. We report that SMOC2 is upregulated in the kidney tubular epithelial cells of mice and humans following fibrosis. Using genetically manipulated mice with SMOC2 overexpression or knockdown, we show that SMOC2 is critically involved in the progression of kidney fibrosis.
View Article and Find Full Text PDFIntroduction: Fibrosis is a complex chronic disease characterized by a persistent repair response. Its pathogenesis is poorly understood but it is typically the result of chronic inflammation and maintained with the required activity of transforming growth factor-β (TGFβ) and extracellular matrix (ECM) tension, both of which drive fibroblasts to transition into a myofibroblast phenotype.
Findings: As the effector cells of repair, myofibroblasts migrate to the site of injury to deposit excessive amounts of matrix proteins and stimulate high levels of contraction.
Deregulation of the tyrosine kinase signalling is often associated with tumour progression and drug resistance, but its underlying mechanisms are only partly understood. In this study, we investigated the effects of the receptor tyrosine kinase AXL on the stability of the MDMX-MDM2 heterocomplex and the activity of p53 in melanoma cells. Our data demonstrated that AXL overexpression or activation through growth arrest-specific 6 (Gas6) ligand stimulation increases MDMX and MDM2 protein levels and decreases p53 activity.
View Article and Find Full Text PDFDeregulated receptor tyrosine kinase (RTK) signaling is frequently associated with tumorigenesis and therapy resistance, but its underlying mechanisms still need to be elucidated. In this study, we have shown that the RTK human epidermal growth factor receptor 4 (Her4, also known as Erbb4) can inhibit the tumor suppressor p53 by regulating MDMX-mouse double minute 2 homolog (MDM2) complex stability. Upon activation by either overexpression of a constitutively active vector or ligand binding (Neuregulin-1), Her4 was able to stabilize the MDMX-MDM2 complex, resulting in suppression of p53 transcriptional activity, as shown by p53-responsive element-driven luciferase assay and mRNA levels of p53 target genes.
View Article and Find Full Text PDFProstaglandin E2 (PGE2 )-stimulated G-protein-coupled receptor (GPCR) activation inhibits pro-fibrotic TGFβ-dependent stimulation of human fibroblast to myofibroblast transition (FMT), though the precise molecular mechanisms are not fully understood. In the present study, we describe the PGE2 -dependent suppression and reversal of TGFβ-induced events such as α-sma expression, stress fiber formation, and Ras/Raf/ERK/MAPK pathway-dependent activation of myofibroblast migration. In order to elucidate post-ligand-receptor signaling pathways, we identified a predominant PKA phosphorylation motif profile in human primary fibroblasts after treatment with exogenous PGE2 (EC50 30 nM, Vmax 100 nM), mimicked by the adenyl cyclase activator forskolin (EC50 5 μM, Vmax 10 μM).
View Article and Find Full Text PDFThe Prostaglandin E2 (PGE2) signaling mechanism within fibroblasts is of growing interest as it has been shown to prevent numerous fibrotic features of fibroblast activation with limited evidence of downstream pathways. To understand the mechanisms of fibroblasts producing tremendous amounts of PGE2 with autocrine effects, we apply a strategy of combining a wide-screening of PGE2-induced kinases with quantitative phosphoproteomics. Our large-scale proteomic approach identified a PKA signal transmitted through phosphorylation of its substrates harboring the R(R/X)X(S*/T*) motif.
View Article and Find Full Text PDFProstaglandin E2 is a pleiotropic bioactive lipid that controls cytoskeletal alterations, although the precise G-protein coupled EP receptor signalling mechanisms remain ill defined. We adopted a phosphoproteomic approach to characterize post-receptor downstream signalling substrates using antibodies that selectively recognize and immunoprecipitate phosphorylated substrates of a number of kinases. Using human synovial fibroblasts in monolayer cell culture, PGE2 induced rapid and sustained changes in cellular morphology and reduction in cytoplasmic volume that were associated with disassembly of the phalloidin-stained stress fibres as judged by light and confocal microscopy.
View Article and Find Full Text PDFTLRs constitute a first set of sensors that detect viral nucleic acids including dsRNA which triggers TLR3. We report the early, direct, and detrimental effect of polyinosine-polycytidilic acid treatment on T cell development. Inhibition of thymopoiesis was targeted to several thymocyte subpopulations.
View Article and Find Full Text PDF