Publications by authors named "Casie A Genetti"

Protein aggregate myopathies can result from pathogenic variants in genes encoding protein chaperones. DNAJB4 is a cochaperone belonging to the heat shock protein-40 (HSP40) family and plays a vital role in cellular proteostasis. Recessive loss-of-function variants in cause myopathy with early respiratory failure and spinal rigidity, presenting from infancy to adulthood.

View Article and Find Full Text PDF

Protein aggregate myopathies can result from pathogenic variants in genes encoding protein chaperones. DNAJB4 is a cochaperone belonging to the heat shock protein-40 (HSP40) family and plays a vital role in cellular proteostasis. Recessive loss-of-function variants in DNAJB4 cause myopathy with early respiratory failure and spinal rigidity, presenting from infancy to adulthood.

View Article and Find Full Text PDF

Purpose: It is essential that studies of genomic sequencing (GS) in newborns and children include individuals from under-represented racial and ethnic groups (URG) to ensure future applications are equitably implemented. We conducted interviews with parents from URG to better understand their perspectives on GS research, develop strategies to reduce barriers to enrollment, and facilitate research participation.

Methods: Semi-structured interviews with 50 parents from URG.

View Article and Find Full Text PDF

Efforts to implement and evaluate genome sequencing (GS) as a screening tool for newborns and infants are expanding worldwide. The first iteration of the BabySeq Project (2015-2019), a randomized controlled trial of newborn sequencing, produced novel evidence on medical, behavioral, and economic outcomes. The second iteration of BabySeq, which began participant recruitment in January 2023, examines GS outcomes in a larger, more diverse cohort of more than 500 infants up to one year of age recruited from pediatric clinics at several sites across the United States.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers identified bi-allelic disruptive variants as the cause of autosomal recessive intellectual developmental disorder type 65, while dominant variants are harder to link to specific traits due to their presence in unaffected individuals.
  • The study involved a retrospective analysis of 21 individuals with likely pathogenic variants, focusing on clinical information and molecular data from their families.
  • Key findings revealed that those with dominant disruptive variants exhibited more developmental and behavioral problems, while individuals with dominant missense variants had a higher occurrence of renal and skin anomalies, enhancing the understanding of the related neurodevelopmental disorder.
View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies RNU4-2, a non-coding RNA gene, as a significant contributor to syndromic NDD, revealing a specific 18-base pair region with low variation that includes variants found in 115 individuals with NDD.
  • * RNU4-2 is highly expressed in the developing brain, and its variants disrupt splicing processes, indicating that non-coding genes play a crucial role in rare disorders, potentially aiding in the diagnosis of thousands with NDD worldwide.
View Article and Find Full Text PDF

Intracellular trafficking involves an intricate machinery of motor complexes including the dynein complex to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains as well as cytoplasmic light and intermediate chains have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers sequenced the genomes of 822 families with suspected rare monogenic diseases that were previously undiagnosed through standard genetic tests, including exome sequencing.
  • They found that genome sequencing provided a molecular diagnosis for 29.3% of the initial families, with 8.2% requiring genome sequencing to identify variants that exome sequencing missed.
  • The study showed that both research and clinical approaches could benefit from genome sequencing, demonstrating its importance in uncovering previously undetected genetic variations.
View Article and Find Full Text PDF

Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA as a novel syndromic NDD gene.

View Article and Find Full Text PDF

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform.

View Article and Find Full Text PDF

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene.

View Article and Find Full Text PDF

Background: Causal variants underlying rare disorders may remain elusive even after expansive gene panels or exome sequencing (ES). Clinicians and researchers may then turn to genome sequencing (GS), though the added value of this technique and its optimal use remain poorly defined. We therefore investigated the advantages of GS within a phenotypically diverse cohort.

View Article and Find Full Text PDF
Article Synopsis
  • - The Virtual GenOme CenteR is a study designed to improve access to rapid genomic sequencing (rGS) for critically ill infants from racial and ethnic minority and low-income populations who typically receive care in community settings lacking advanced genomic resources.
  • - The study involves developing a virtual support system for neonatal intensive care units (NICUs) where staff are trained in genomic medicine, and eligible infants (around 250) receive rGS along with follow-up for one year to assess outcomes and evaluate the implementation process.
  • - Ethics approval has been obtained, and the study ensures that participating families provide informed consent while collecting data through various methods, including surveys and interviews with both providers and families, to analyze the effectiveness of the program.
View Article and Find Full Text PDF

Advances in bioinformatic tools paired with the ongoing accumulation of genetic knowledge and periodic reanalysis of genomic sequencing data have led to an improvement in genetic diagnostic rates. Candidate gene variants (CGVs) identified during sequencing or on reanalysis but not yet implicated in human disease or associated with a phenotypically distinct condition are often not revisited, leading to missed diagnostic opportunities. Here, we revisited 33 such CGVs from our previously published study and determined that 16 of them are indeed disease-causing (novel or phenotype expansion) since their identification.

View Article and Find Full Text PDF

Background: Titinopathies are caused by mutations in the titin gene (). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission.

View Article and Find Full Text PDF

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium.

View Article and Find Full Text PDF
Article Synopsis
  • Erythromelalgia is characterized by severe burning pain and redness in the hands and feet, which is relieved by cold and worsens with heat; this study examined 42 pediatric cases to better understand the condition.* -
  • The majority of patients were female, with an average onset age of 12 years, and many had to consult multiple specialists before receiving a diagnosis; cooling methods helped alleviate symptoms, but no specific medication consistently worked.* -
  • This research represents one of the largest pediatric studies on erythromelalgia, with findings that align with previous case studies, and efforts are being made to create a registry for further investigation.*
View Article and Find Full Text PDF

Background: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital myopathy with multisystem involvement, often requiring invasive ventilator support, gastrostomy tube feeding, and wheelchair use. Understanding healthcare resource utilization in patients with XLMTM is important for development of targeted therapies but data are limited.

Methods: We analyzed individual medical codes as governed by Healthcare Common Procedure Coding System, Current Procedural Terminology, and International Classification of Diseases, 10th Revision (ICD-10) for a defined cohort of XLMTM patients within a US medical claims database.

View Article and Find Full Text PDF
Article Synopsis
  • Newborn genomic sequencing (NBSeq) has significant potential for identifying medically relevant genetic information, but data on how to act on these findings is currently limited.
  • In a clinical trial involving 127 healthy infants and 32 in intensive care, 17 infants (10.7%) were found to have unexpected genetic disease risks (uMDRs), which were evaluated for their actionability using a specialized metric.
  • All identified uMDRs were deemed moderately to highly actionable, leading to follow-up medical actions, including family screenings and lifesaving interventions, indicating that large-scale sequencing of newborns could greatly impact healthcare for infants and their families.
View Article and Find Full Text PDF

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers utilized the Variant Effect Predictor Algorithm to identify genes with ultra-rare variants linked to adult-onset schizophrenia and focused on a cohort of 34 EOP individuals.
  • * Findings revealed a significant increase in VEPHMI variants in the EOP group, with 20% of them carrying such variants, supporting the idea that these genetic factors may play a role in neuropsychiatric disorders.
View Article and Find Full Text PDF

X-linked hypophosphatemia is the most common cause of inherited rickets, due to inactivating variants of PHEX. More than 800 variants have been described to date and one which consists of a single base change in the 3' untranslated region (UTR) (c.*231A>G) is reported as prevalent in North America.

View Article and Find Full Text PDF

A male infant presented at term with neonatal respiratory failure and pulmonary hypertension. His respiratory symptoms improved initially, but he exhibited a biphasic clinical course, re-presenting at 15 months of age with tachypnea, interstitial lung disease, and progressive pulmonary hypertension. We identified an intronic TBX4 gene variant in close proximity to the canonical donor splice site of exon 3 (hg 19; chr17:59543302; c.

View Article and Find Full Text PDF

Clinical exome/genome sequencing is increasingly being utilized by clinicians to diagnose various likely genetic conditions, but many cases remain undiagnosed. In a subset of those undiagnosed cases, a single heterozygous variant in an autosomal recessive (AR) condition with consistent phenotype may be identified, raising the question if a second variant is missing. Here, we report two cases of recessive conditions in which only one heterozygous variant was initially reported by clinical exome sequencing, and on research reanalysis a second heterozygous variant in trans was identified.

View Article and Find Full Text PDF