Publications by authors named "Cash S"

Network hyperexcitability is a feature of Alzheimer' disease (AD) as well as numerous transgenic mouse models of AD. While hyperexcitability in AD patients and AD animal models share certain features, the mechanistic overlap remains to be established. We aimed to identify features of network hyperexcitability in AD models that can be related to epileptiform activity signatures in AD patients.

View Article and Find Full Text PDF

Restoring communication for people with locked-in syndrome remains a challenging clinical problem without a reliable solution. Recent studies have shown that people with paralysis can use brain-computer interfaces (BCIs) based on intracortical spiking activity to efficiently type messages. However, due to neuronal signal instability, most intracortical BCIs have required frequent calibration and continuous assistance of skilled engineers to maintain performance.

View Article and Find Full Text PDF

Objective: Delayed cerebral ischemia (DCI) is a common, disabling complication of subarachnoid hemorrhage (SAH). Preventing DCI is a key focus of neurocritical care, but interventions carry risk and cannot be applied indiscriminately. Although retrospective studies have identified continuous electroencephalographic (cEEG) measures associated with DCI, no study has characterized the accuracy of cEEG with sufficient rigor to justify using it to triage patients to interventions or clinical trials.

View Article and Find Full Text PDF

The presence of Epileptiform Transients (ET) in the electroencephalogram (EEG) is a key finding in the medical workup of a patient with suspected epilepsy. Automated ET detection can increase the uniformity and speed of ET detection. Current ET detection methods suffer from insufficient precision and high false positive rates.

View Article and Find Full Text PDF

We hypothesize that epileptiform abnormalities (EAs) in the electroencephalogram (EEG) during the acute period following traumatic brain injury (TBI) independently predict first-year post-traumatic epilepsy (PTE ). We analyze PTE risk factors in two cohorts matched for TBI severity and age (n = 50). EAs independently predict risk for PTE (odds ratio [OR], 3.

View Article and Find Full Text PDF

Sleep spindles are a cardinal feature in human NREM sleep and may be important for memory consolidation. We studied the intracortical organization of spindles in men and women by recording spontaneous sleep spindles from different cortical layers using linear microelectrode arrays. Two patterns of spindle generation were identified using visual inspection, and confirmed with factor analysis.

View Article and Find Full Text PDF

Objective: To determine predictors of fluid milk waste in a Breakfast in the Classroom School Breakfast Program.

Design: Cross-sectional with 3 repeated measures/classroom.

Setting: Elementary schools in a medium-sized, low-income, urban school district.

View Article and Find Full Text PDF

The neocortex is composed of six anatomically and physiologically specialized layers. It has been proposed that integration of activity across cortical areas is mediated anatomically by associative connections terminating in superficial layers, and physiologically by slow cortical rhythms. However, the means through which neocortical anatomy and physiology interact to coordinate neural activity remains obscure.

View Article and Find Full Text PDF

Objective: Brain-computer interfaces (BCIs) can enable individuals with tetraplegia to communicate and control external devices. Though much progress has been made in improving the speed and robustness of neural control provided by intracortical BCIs, little research has been devoted to minimizing the amount of time spent on decoder calibration.

Approach: We investigated the amount of time users needed to calibrate decoders and achieve performance saturation using two markedly different decoding algorithms: the steady-state Kalman filter, and a novel technique using Gaussian process regression (GP-DKF).

View Article and Find Full Text PDF

Animal studies support the hypothesis that in slow-wave sleep, replay of waking neocortical activity under hippocampal guidance leads to memory consolidation. However, no intracranial electrophysiological evidence for replay exists in humans. We identified consistent sequences of population firing peaks across widespread cortical regions during complete waking periods.

View Article and Find Full Text PDF

Interictal epileptiform spikes are the key diagnostic biomarkers for epilepsy. The clinical gold standard of spike detection is visual inspection performed by neurologists. This is a tedious, time-consuming, and expert-centered process.

View Article and Find Full Text PDF

High-density electrocorticogram (ECoG) electrodes are capable of recording neurophysiological data with high temporal resolution with wide spatial coverage. These recordings are a window to understanding how the human brain processes information and subsequently behaves in healthy and pathologic states. Here, we describe and implement delay differential analysis (DDA) for the characterization of ECoG data obtained from human patients with intractable epilepsy.

View Article and Find Full Text PDF

Objective: In mesial temporal lobe (mTL) epilepsy, seizure onset can precede the appearance of a scalp EEG ictal pattern by many seconds. The ability to identify this early, occult mTL seizure activity could improve lateralization and localization of mTL seizures on scalp EEG.

Methods: Using scalp EEG spectral features and machine learning approaches on a dataset of combined scalp EEG and foramen ovale electrode recordings in patients with mTL epilepsy, we developed an algorithm, SCOPE-mTL, to detect and lateralize early, occult mTL seizure activity, prior to the appearance of a scalp EEG ictal pattern.

View Article and Find Full Text PDF

Unlabelled: Among US firefighters, cardiovascular disease is the leading cause of on-duty death. Poor diet contributes to this burden, but effective strategies to encourage healthy eating in the fire service are not established. "Feeding America's Bravest" motivates firefighters and their families to modify their food culture and reduce cardiometabolic risk profiles by adopting Mediterranean diet principles.

View Article and Find Full Text PDF

Ultra-late melanoma recurrence is infrequent, poorly understood and, in most cases, difficult to unambiguously distinguish from a new primary melanoma. We identified a patient with a second melanoma diagnosed after a 30-year disease-free interval, and sought to determine if this new lesion was a recurrence of the original melanoma. Here we report the genomic sequence analysis of the exomes of 2 melanoma lesions isolated from the same individual in 1985 and 2015, and their comparison to each other and to the germline DNA of the patient.

View Article and Find Full Text PDF

Background: Children's dietary-related diseases and their associated costs have expanded dramatically in many countries, making children's food choice a policy issue of increasing relevance. As children spend a considerable amount of money on energy-dense, nutrient-poor (EDNP) products, a better understanding of the main drivers of children's independent food purchase decisions is crucial to move this behavior toward healthier options.

Objective: The objective of the study is to investigate the role of branding and price in motivating children to choose healthier snack options.

View Article and Find Full Text PDF

Although sentences unfold sequentially, one word at a time, most linguistic theories propose that their underlying syntactic structure involves a tree of nested phrases rather than a linear sequence of words. Whether and how the brain builds such structures, however, remains largely unknown. Here, we used human intracranial recordings and visual word-by-word presentation of sentences and word lists to investigate how left-hemispheric brain activity varies during the formation of phrase structures.

View Article and Find Full Text PDF

Objective: Evaluate the seizure-reduction response and safety of mesial temporal lobe (MTL) brain-responsive stimulation in adults with medically intractable partial-onset seizures of mesial temporal lobe origin.

Methods: Subjects with mesial temporal lobe epilepsy (MTLE) were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline.

View Article and Find Full Text PDF

Objective: Evaluate the seizure-reduction response and safety of brain-responsive stimulation in adults with medically intractable partial-onset seizures of neocortical origin.

Methods: Patients with partial seizures of neocortical origin were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline.

View Article and Find Full Text PDF

Epilepsy-the propensity toward recurrent, unprovoked seizures-is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales.

View Article and Find Full Text PDF

Our objective was to assess the ability of a smartphone-based electroencephalography (EEG) application, the Smartphone Brain Scanner-2 (SBS2), to detect epileptiform abnormalities compared to standard clinical EEG. The SBS2 system consists of an Android tablet wirelessly connected to a 14-electrode EasyCap headset (cost ~ 300 USD). SBS2 and standard EEG were performed in people with suspected epilepsy in Bhutan (2014-2015), and recordings were interpreted by neurologists.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) aim to restore independence to people with severe motor disabilities by allowing control of acursor on a computer screen or other effectors with neural activity. However, physiological and/or recording-related nonstationarities in neural signals can limit long-term decoding stability, and it would be tedious for users to pause use of the BCI whenever neural control degrades to perform decoder recalibration routines. We recently demonstrated that a kinematic decoder (i.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) use neural information recorded from the brain for the voluntary control of external devices. The development of BCI systems has largely focused on improving functional independence for individuals with severe motor impairments, including providing tools for communication and mobility. In this review, we describe recent advances in intracortical BCI technology and provide potential directions for further research.

View Article and Find Full Text PDF