Publications by authors named "Casey P Collins"

Replication-incompetent gammaretroviral (γRV) and lentiviral (LV) vectors have both been used in insertional mutagenesis screens to identify cancer drivers. In this approach the vectors stably integrate in the host cell genome and induce cancers by dysregulating nearby genes. The cells that contain a retroviral vector provirus in or near a proto-oncogene or tumor suppressor are preferentially enriched in a tumor.

View Article and Find Full Text PDF

Retroviral gene therapy offers immense potential to treat many genetic diseases and has already shown efficacy in clinical trials. However, retroviral vector mediated genotoxicity remains a major challenge and clinically relevant approaches to reduce integration near genes and proto-oncogenes are needed. Foamy retroviral vectors have several advantages over gammaretroviral and lentiviral vectors including a potentially safer integration profile and a lower propensity to activate nearby genes.

View Article and Find Full Text PDF

Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes.

View Article and Find Full Text PDF

Prostate cancer (PC) is the second leading cause of cancer related deaths in US men. Androgen deprivation therapy (ADT) improves clinical outcome, but tumors often recur and progress to androgen independent prostate cancer (AIPC) which no longer responds to ADT. The progression to AIPC is due to genetic alterations that allow PC cancer cells to grow in the absence of androgen.

View Article and Find Full Text PDF

High-throughput mapping of retroviral vector integration sites (RIS) has become an invaluable tool to evaluate novel gene therapy vectors and to track clonal contribution in preclinical and clinical studies. Beard et al. (Methods Mol Biol 2014;1185:321-344) described an improved protocol developed for efficient capture, sequencing, and analysis of RIS that preserves gene-modified clonal contribution information.

View Article and Find Full Text PDF