Background: PM2.5 precursor emissions have declined over the course of several decades, following the implementation of local, state, and federal air quality policies. Estimating the corresponding change in population exposure and PM2.
View Article and Find Full Text PDFThe effectiveness of regulatory actions designed to improve air quality is often assessed by predicting changes in public health resulting from their implementation. Risk of premature mortality from long-term exposure to ambient air pollution is the single most important contributor to such assessments and is estimated from observational studies generally assuming a log-linear, no-threshold association between ambient concentrations and death. There has been only limited assessment of this assumption in part because of a lack of methods to estimate the shape of the exposure-response function in very large study populations.
View Article and Find Full Text PDFBackground: Current epidemiologic studies rely on simple ozone metrics which may not appropriately capture population ozone exposure. For understanding health effects of long-term ozone exposure in population studies, it is advantageous for exposure estimation to incorporate the complex spatiotemporal pattern of ozone concentrations at fine scales.
Objective: To develop a geo-statistical exposure prediction model that predicts fine scale spatiotemporal variations of ambient ozone in six United States metropolitan regions.
Introduction: Recent cohort studies have used exposure prediction models to estimate the association between long-term residential concentrations of fine particulate matter (PM2.5) and health. Because these prediction models rely on PM2.
View Article and Find Full Text PDFBackground: Long-term exposure to fine particulate matter less than 2.5 μm in diameter (PM2.5) and traffic-related air pollutant concentrations are associated with cardiovascular risk.
View Article and Find Full Text PDFAssessments of long-term air pollution exposure in population studies have commonly employed land-use regression (LUR) or chemical transport modeling (CTM) techniques. Attempts to incorporate both approaches in one modeling framework are challenging. We present a novel geostatistical modeling framework, incorporating CTM predictions into a spatiotemporal LUR model with spatial smoothing to estimate spatiotemporal variability of ozone (O3) and particulate matter with diameter less than 2.
View Article and Find Full Text PDFRationale: Diesel exhaust inhalation, which is the model traffic-related air pollutant exposure, is associated with vascular dysfunction.
Objectives: To determine whether healthy subjects exposed to diesel exhaust exhibit acute vasoconstriction and whether this effect could be modified by the use of antioxidants or by common variants in the angiotensin II type 1 receptor (AGTR1) and other candidate genes.
Methods: In a genotype-stratified, double-blind, four-way crossover study, 21 healthy adult subjects were exposed at rest in a randomized, balanced order to diesel exhaust (200 μg/m(3) particulate matter with an aerodynamic diameter ≤ 2.
Background: Coronary artery calcium (CAC) detected by noncontrast cardiac computed tomography scanning is a measure of coronary atherosclerosis burden. Increasing CAC levels have been strongly associated with increased coronary events. Prior studies of cardiovascular disease risk factors and CAC progression have been limited by short follow-up or restricted to patients with advanced disease.
View Article and Find Full Text PDFThere is growing evidence in the epidemiologic literature of the relationship between air pollution and adverse health outcomes. Prediction of individual air pollution exposure in the Environmental Protection Agency (EPA) funded Multi-Ethnic Study of Atheroscelerosis and Air Pollution (MESA Air) study relies on a flexible spatio-temporal prediction model that integrates land-use regression with kriging to account for spatial dependence in pollutant concentrations. Temporal variability is captured using temporal trends estimated via modified singular value decomposition and temporally varying spatial residuals.
View Article and Find Full Text PDFBackground: Cohort studies of the relationship between air pollution exposure and chronic health effects require predictions of exposure over long periods of time.
Objectives: We developed a unified modeling approach for predicting fine particulate matter, nitrogen dioxide, oxides of nitrogen, and black carbon (as measured by light absorption coefficient) in six U.S.
Background: Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative risk (RR) function. However, adequate direct evidence to identify the shape of the mortality RR functions at the high ambient concentrations observed in many places in the world is lacking.
View Article and Find Full Text PDFObjectives: To assess the bias incurred when curtailment of Lot Quality Assurance Sampling (LQAS) is ignored, to present unbiased estimators, to consider the impact of cluster sampling by simulation and to apply our method to published polio immunization data from Nigeria.
Methods: We present estimators of coverage when using two kinds of curtailed LQAS strategies: semicurtailed and curtailed. We study the proposed estimators with independent and clustered data using three field-tested LQAS designs for assessing polio vaccination coverage, with samples of size 60 and decision rules of 9, 21 and 33, and compare them to biased maximum likelihood estimators.
Background: Traditional Lot Quality Assurance Sampling (LQAS) designs assume observations are collected using simple random sampling. Alternatively, randomly sampling clusters of observations and then individuals within clusters reduces costs but decreases the precision of the classifications. In this paper, we develop a general framework for designing the cluster(C)-LQAS system and illustrate the method with the design of data quality assessments for the community health worker program in Rwanda.
View Article and Find Full Text PDFBackground: Implementation of trachoma control strategies requires reliable district-level estimates of trachomatous inflammation-follicular (TF), generally collected using the recommended gold-standard cluster randomized surveys (CRS). Integrated Threshold Mapping (ITM) has been proposed as an integrated and cost-effective means of rapidly surveying trachoma in order to classify districts according to treatment thresholds. ITM differs from CRS in a number of important ways, including the use of a school-based sampling platform for children aged 1-9 and a different age distribution of participants.
View Article and Find Full Text PDFImportance: Understanding the major health problems in the United States and how they are changing over time is critical for informing national health policy.
Objectives: To measure the burden of diseases, injuries, and leading risk factors in the United States from 1990 to 2010 and to compare these measurements with those of the 34 countries in the Organisation for Economic Co-operation and Development (OECD) countries.
Design: We used the systematic analysis of descriptive epidemiology of 291 diseases and injuries, 1160 sequelae of these diseases and injuries, and 67 risk factors or clusters of risk factors from 1990 to 2010 for 187 countries developed for the Global Burden of Disease 2010 Study to describe the health status of the United States and to compare US health outcomes with those of 34 OECD countries.
Hypertension is an important and modifiable risk factor for cardiovascular disease and mortality. Over the last decade, national-levels of controlled hypertension have increased, but little information on hypertension prevalence and trends in hypertension treatment and control exists at the county-level. We estimate trends in prevalence, awareness, treatment, and control of hypertension in US counties using data from the National Health and Nutrition Examination Survey (NHANES) in five two-year waves from 1999-2008 including 26,349 adults aged 30 years and older and from the Behavioral Risk Factor Surveillance System (BRFSS) from 1997-2009 including 1,283,722 adults aged 30 years and older.
View Article and Find Full Text PDFBackground: Lot Quality Assurance Sampling (LQAS) is a provably useful tool for monitoring health programmes. Although LQAS ensures acceptable Producer and Consumer risks, the literature alleges that the method suffers from poor specificity and positive predictive values (PPVs). We suggest that poor LQAS performance is due, in part, to variation in the true underlying distribution.
View Article and Find Full Text PDFBackground: Quantification of the disease burden caused by different risks informs prevention by providing an account of health loss different to that provided by a disease-by-disease analysis. No complete revision of global disease burden caused by risk factors has been done since a comparative risk assessment in 2000, and no previous analysis has assessed changes in burden attributable to risk factors over time.
Methods: We estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010.
Background: Measuring disease and injury burden in populations requires a composite metric that captures both premature mortality and the prevalence and severity of ill-health. The 1990 Global Burden of Disease study proposed disability-adjusted life years (DALYs) to measure disease burden. No comprehensive update of disease burden worldwide incorporating a systematic reassessment of disease and injury-specific epidemiology has been done since the 1990 study.
View Article and Find Full Text PDFBackground: Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs).
View Article and Find Full Text PDFBackground: Originally a binary classifier, Lot Quality Assurance Sampling (LQAS) has proven to be a useful tool for classification of the prevalence of Schistosoma mansoni into multiple categories (≤10%, >10 and <50%, ≥50%), and semi-curtailed sampling has been shown to effectively reduce the number of observations needed to reach a decision. To date the statistical underpinnings for Multiple Category-LQAS (MC-LQAS) have not received full treatment. We explore the analytical properties of MC-LQAS, and validate its use for the classification of S.
View Article and Find Full Text PDFEmerg Themes Epidemiol
June 2010
Lot Quality Assurance Sampling (LQAS) applications in health have generally relied on frequentist interpretations for statistical validity. Yet health professionals often seek statements about the probability distribution of unknown parameters to answer questions of interest. The frequentist paradigm does not pretend to yield such information, although a Bayesian formulation might.
View Article and Find Full Text PDFTraditional lot quality assurance sampling (LQAS) methods require simple random sampling to guarantee valid results. However, cluster sampling has been proposed to reduce the number of random starting points. This study uses simulations to examine the classification error of two such designs, a 67x3 (67 clusters of three observations) and a 33x6 (33 clusters of six observations) sampling scheme to assess the prevalence of global acute malnutrition (GAM).
View Article and Find Full Text PDF