Publications by authors named "Casey Ligon"

Aims: Visceral hypersensitivity is a therapy-resistant hallmark of irritable bowel syndrome (IBS). Many IBS patients' symptoms develop following an acute colitis, and most report that stress worsens symptoms. STW 5-II, a combination of six herbal extracts, is a clinically proven treatment for IBS, but the mechanism is uncertain.

View Article and Find Full Text PDF

Irritable bowel syndrome (IBS) and bladder pain syndrome/interstitial cystitis (BPS/IC) are comorbid visceral pain disorders seen commonly in women with unknown etiology and limited treatment options and can involve visceral organ cross-sensitization. Calcitonin gene-related peptide (CGRP) is a mediator of nociceptive processing and may serve as a target for therapy. In three rodent models, we employed a monoclonal anti-CGRP F(ab') to investigate the hypothesis that visceral organ cross-sensitization is mediated by abnormal CGRP signaling.

View Article and Find Full Text PDF

Irritable bowel syndrome (IBS) is a brain-gut disorder characterized by abdominal pain and altered bowel habits. Although the etiology of IBS remains unclear, stress in adulthood or in early life has been shown to be a significant factor in the development of IBS symptomatology. Evidence suggests that aberrant calcitonin gene-related peptide (CGRP) signaling may be involved in afferent sensitization and visceral organ hypersensitivity.

View Article and Find Full Text PDF

Background: Psychological stress is a risk factor for irritable bowel syndrome, a functional gastrointestinal pain disorder featuring abnormal brain-gut connectivity. The guanylate cyclase-C (GC-C) agonist linaclotide has been shown to relieve abdominal pain in IBS-C and exhibits antinociceptive effects in rodent models of post-inflammatory visceral hypersensitivity. However, the role GC-C signaling plays in psychological stress-induced visceral hypersensitivity is unknown.

View Article and Find Full Text PDF

Neurogastroenterology refers to the study of the extrinsic and intrinsic nervous system circuits controlling the gastrointestinal (GI) tract. Over the past 5-10 yr there has been an explosion in novel methodologies, technologies and approaches that offer great promise to advance our understanding of the basic mechanisms underlying GI function in health and disease. This review focuses on the use of optogenetics combined with electrophysiology in the field of neurogastroenterology.

View Article and Find Full Text PDF

Abdominal pain represents a significant complaint in patients with irritable bowel syndrome (IBS). While the etiology of IBS is incompletely understood, prior exposure to gastrointestinal inflammation or psychologic stress is frequently associated with the development of symptoms. Inflammation or stress-induced expression of growth factors or cytokines may contribute to the pathophysiology of IBS.

View Article and Find Full Text PDF

Background: Chronic visceral pain is persistent pain emanating from thoracic, pelvic, or abdominal origin that is poorly localized with regard to the specific organ affected. The prevalence can range up to 25% in the adult population as chronic visceral pain is a common feature of many visceral disorders, which may or may not be accompanied by distinct structural or histological abnormalities within the visceral organs. Mounting evidence suggests that changes in epigenetic mechanisms are involved in the top-down or bottom-up sensitization of pain pathways and the development of chronic pain.

View Article and Find Full Text PDF

Background: The expression of RET in the developing enteric nervous system (ENS) suggests that RET may contribute to adult intestinal function. ENS cholinergic nerves play a critical role in the control of colonic function through the release of acetylcholine (ACh). In the current study, we hypothesized that a RET-mediated mechanism may regulate colonic ion transport and motility through modulation of cholinergic nerves.

View Article and Find Full Text PDF

Bladder pain syndrome (BPS) is poorly understood; however, there is a female predominance and comorbidity with irritable bowel syndrome (IBS). Here we test the hypothesis that linaclotide, a guanylate cyclase-C (GC-C) agonist approved for the treatment of IBS with constipation (IBS-C), may represent a novel therapeutic for BPS acting through a mechanism involving an inhibition of visceral organ cross-sensitization. We showed previously that infusion of dilute protamine sulfate (PS) into the bladder increased sensitivity and permeability in the bladder and colon.

View Article and Find Full Text PDF

In vivo optogenetics identifies brain circuits controlling behaviors in conscious animals by using light to alter neuronal function and offers a novel tool to study the brain-gut axis. Using adenoviral-mediated expression, we aimed to investigate whether photoactivation with channelrhodopsin (ChR2) or photoinhibition with halorhodopsin (HR3.0) of fibers originating from the central nucleus of the amygdala (CeA) at the bed nucleus of the stria terminalis (BNST) had any effect on colonic sensitivity.

View Article and Find Full Text PDF

Chronic pain is a multifaceted and complex condition. Broadly classified into somatic, visceral, or neuropathic pain, it is poorly managed despite its prevalence. Current drugs used for the treatment of chronic pain are limited by tolerance with long-term use, abuse potential, and multiple adverse side effects.

View Article and Find Full Text PDF