Publications by authors named "Casey J Toft"

Rapid testing has become an indispensable strategy to identify the most infectious individuals and prevent the transmission of SARS-CoV-2 in vulnerable populations. As such, COVID-19 rapid antigen tests (RATs) are being manufactured faster than ever yet lack relevant comparative analyses required to inform on absolute analytical sensitivity and performance, limiting end-user ability to accurately compare brands for decision making. To date, more than 1000 different COVID-19 RATs are commercially available in the world, most of which detect the viral nucleocapsid protein (NP).

View Article and Find Full Text PDF

Over 1.2 million deaths are attributed to multi-drug-resistant (MDR) bacteria each year. Persistence of MDR bacteria is primarily due to the molecular mechanisms that permit fast replication and rapid evolution.

View Article and Find Full Text PDF

Aggressive diagnostic testing remains an indispensable strategy for health and aged care facilities to prevent the transmission of SARS-CoV-2 in vulnerable populations. The preferred diagnostic platform has shifted towards COVID-19 rapid antigen tests (RATs) to identify the most infectious individuals. As such, RATs are being manufactured faster than at any other time in our history yet lack the relevant quantitative analytics required to inform on absolute analytical sensitivity enabling manufacturers to maintain high batch-to-batch reproducibility, and end-users to accurately compare brands for decision making.

View Article and Find Full Text PDF

A variety of replication fork traps have recently been characterised in Enterobacterales, unveiling two different types of architecture. Of these, the degenerate type II fork traps are commonly found in Enterobacteriaceae such as Escherichia coli. The newly characterised type I fork traps are found almost exclusively outside Enterobacteriaceae within Enterobacterales and include several archetypes of possible ancestral architectures.

View Article and Find Full Text PDF

Tus is a protein involved in DNA replication termination that binds specific DNA sequences (Ter) located around the terminus region of the chromosome in Enterobacterales. Tus and Ter form a unique monomeric protein-DNA complex which is one of strongest of its kind. A fascinating aspect of Tus-Ter is its ability to dramatically change conformation into a locked structure upon progression of a replication fork towards the non-permissive face of the complex.

View Article and Find Full Text PDF

In , DNA replication termination is orchestrated by two clusters of sites forming a DNA replication fork trap when bound by Tus proteins. The formation of a 'locked' Tus- complex is essential for halting incoming DNA replication forks. However, the absence of replication fork arrest at some sites raised questions about their significance.

View Article and Find Full Text PDF